Quantum Field Theory Problems
Alec Lau

Question 1. Consider the space D of continuously differentiable complez-valued functions f on
[0,1]. Consider the operator A on L?([0, 1]) with domain D, defined by A(f) = if’. Is A symmetric?
What happens if one considers instead the domain D, := {f € D : f(1) = af(0)}, where o is a

complex number with modulus 1?7 Written by Prof. Sourav Chatterjee.

Proof. We want to check if (Av|p) = (1| Ap). This gives us (iY)'|p), (¢]i¢’). Rewriting our bra-kets
into integrals, we have fo i) *pda, fo Y*ip'dz. Evaluating the former, we have fo i ) pdr =
fo i) pdr = [—ih*p)] fo i)p*'dr) # fo i*¢'dr. Thus, on this general a domain, A is
not symmetric.
If instead our domain is D, then, evaluating the same integral, we have fol (i) pdx =
[—iv* ] fo i)' de = [—ip*(1)e(1) + 1*(0)p(0)] + fol ip*¢'dx. Computing the first term,
we have [—i(a1)(0))"ap(0) 4 it (0)¢(0)] = [~ia"ar™ (0)¢(0) + i (0)@(0)] = (1 — a*a)i* (0)¢(0).
Since o has modulus 1, a*« = 1, and this term becomes zero and hence fol (A)*odx = fol v* Ay,

so A becomes symmetric on this domain. O

Question 2. Recall the definition of the manifold X,,, the measure \,, on X,,, and the Hilbert
space H = L?(X,,,d\,). Recall also the operator valued distributions a(p) and a'(p) on the bosonic
Fock space of H. Finally, recall the definitions of a(p) and a'(p). Assuming the commutation

relations for a(p) and a'(p) as given, prove that
la(p), a’ (p")] = (2m)?6®) (p — p' ¥

where ¥ is the identity operator on the Fock space. Written by Prof. Sourav Chatterjee.

Proof. Integrating this operator in Schwartz space, we have [ [ (dzﬂp (gi)3 fp)*g()[alp),al (p")].

_ i
Since a(p) = \;%,cﬂ(p’) = %, we can conclude [a(p),a(p’)] = \/ﬁ[a(p) at(p')]. The
first expression then becomes [ [ (gi)g (g;)g \/4w = /f(p)*g(p’)[a(p),aT(p’)]. We know from the

notes that [a(p),a’(p’)] = d(p — p’)1. We want to integrate this on our mass shell with respect
to our probability measure in order to apply our useful distribution. Since [y dAm(p)f(p) =

3 .
Jgs (lziw‘))S 21}@ f(wp, p), we have the equality




5555 \/4wpw - f(p)*g(P")]a(p), a’(p)] =
[ J drm(p)dN (p')\/Awpwp f()*9(P))[a(p), al (p')]

Integrating once, we find this is equal to [ dAn,(p),/4w2 f(p)*g(p)1 = [ d\n(p)2wp f(P)*g(P)1.
Going back to integrating over momentum space, we find that this is equal to [ %f(p)*g(p)l,
where 1 is the identity operator on our Fock space.

Now we consider | [ (gwr)’g_ gﬂ); f(P)*g(p")(27)36®) (p—p’)1. Integrating once, we find this gives

us [ (‘;TI)’Sf(p)*g(p)L the exact result (up to a set of measure zero) as our original commutator.

Thus, [a(p),a’(p")] = (27)36®) (p — p'). O

Question 3. Consider the theory for massive scalar bosons of mass m. Let ¢ be the free field of

this theory, and let Hy be the Hamiltonian for free evolution. Give a formal proof of the relation

Written by Prof. Sourav Chatterjee.

Proof. Suppose we have a Schwartz function f. Then, since Hy = fRS (‘;?’Tp)gwpaf(p)a(p) and

3.7 . .
= Jprs da f(2) fgs ((127r %(B_Z(w’p)a(p/) + e@P)gf(p’)), we have
3 3 ) )
(Hop)(f) = ng 7(;1;))3 ’wpa]L f]Rl o dat f(x f]R?’ (Cé‘ff)3 \/Tp/(e—l(m,;v)a(p/ + eZ(m,P)aT(p/)’
3.5/ . . 3
(0Ho)(f le o dat f(x fRs (é,r \/W( 7l(w’p)a(P/ + ei@P)gf (p') fRs (L;Tl))swpaT (p)a(p)

Thus we have

[Ho, fR13 dm f )fRs f]R& d3p dgp/

at(p)a(p)e " Pa(p’) + al(p)a(p)e’al (p') — == a(p’)al (p)a(p) — = *)al (p')al (p)a(p)
Factoring out scalars, we have

A= 7@ (@t (p)a(p)a(p)) — a(p)a (p)a(p) + ') (al (p)a(p)a’ (p) — af (p)a’ (P)a(p))
Because [a(p),a(p’)] = 0 and [af(p),a’(p’)] = 0, this is equal to

e~ @) (ol (p)a(p’)a(p) — a(p’)al (p)a(p)) + €@ (af (p)a(p)a’ (p') — af (p)at (p")a(p))

= =@ [al (p), a(p))]a(p) + €@ )al (p)[a(p), af (p)]



We know from the previous problem that [a(p),a’(p’)] = (27m)36®)(p — p’). Also, notice that

[A,B] = AB— BA = (-1)(BA — AB) = —[B, A]. Thus, A becomes

e (<1)(2m)*6) (b — p)a(p) + €'l (27)5) (p - p)

= (2m)36®) (p — p') ('@ )al (p) — e~ =P a(p))

Now, with this helpful rearrangement, we have [Hy, ¢](f) =

3 3./ ’ - ’
le 5 da? fz f]R3 f]RS (gﬂl))3 (dzﬁ)3 F(2ﬂ)35(3 (p—p')(e i )aT(P) —ei@p )a(p))

3 w i(x —i(x
= Juns 42 F(@) fos b i (€0 Pal (p) — e~ Pa(p))

2wp

Let’s take the time derivative of ¢(f) and see what we get. Notice that (z,p) = twp +x - p, so the

time derivative of e*/(*?) = Ljw,e* (=) Thus, 2 G2 = [us dat f(2) [os (d;ﬂ i \;ﬁ(_e—i(w)a(p’)-&-
e!@P)gl(p’)). This is simply 7 times the previous expression we derived form the commutator.

Thus, 2 a7 = i[Ho, @], up to a set of measure zero. O

Question 4. In p* field theory, compute the first order term in the perturbative expansion of the

scattering amplitude

(P2, P3, P4lS|P1)

Written by Prof. Sourav Chatterjee.

Proof. In a first order Dyson series expansion of S gives us 1 — i—g! Jedtz : o(x)t : +0(g?). We

then have

(P2,P3,P4|S|P1) = (P2,P3,PalP1) — ¥ [ d*2(P2,P3, P4l : ¢(2)* : [P1) + O(g?)

= (P2, s, Palp1) — i [z d*z(0la(p2)a(ps)a(pa) : ¢()" : al(p1)]0) + O(g?)

For the first term, we notice that (p2,ps,palp1) = (0la(pz2)a(ps)a(pa)a’(p1)|0). Applying the
first two operators we get either ground state back if p; = p4 or 0 if not. Annihilating the ground

state with the third operator, we get 0, so in both cases (p2,ps,pa|p1) = 0. Focusing on the

integrand, we recall the following useful rules: (0|a(p)p(2)|0) = \/(i) (0]o(z)a’ (p)|0) = "72(;:)

(Ola(pz)a(ps)a(pa) : ¢(z)* : a’(p1)|0) = (0]a(p2)¢(2)[0)(0]a(ps)e(x)[0)(0la(pa)e(x)[0) (0]a’ (p1)e(x)[0).

This expression is equal to (ei(””’m“’3“74*1’1))/(\/1611)192 WpgWp, Wp, ) for each suitable contraction

diagram. Since the scattering involves 1 incoming particle and three outgoing particles, we want



to consider all contraction diagrams of the "four all connected to the center ¢(x) operator"-shape.
The ¢(z)* operator has 4 tails, to which the incoming and outgoing particles get connected. Since

there are 8 operators, there are (8 — 1)!! diagrams, and 4! diagrams of this type. Thus we

have 41 (e/(@P2FPa+pa=p1)) /(| /T6wp, Wp, Wp, Wp, ) terms. Sticking these back into our integral and

integrating, we get (—(4!)(27m)*6™ (py + p3 + pa — 1))/ (\/16wp, wp, wp,wp, ). Thus we have

(P2, P3,P4|S|P1) = (*ig(27)45(4) (p2 +p3+pa *Pl))/(\/mwpzwpawmwpl) + 0(92)~ U

Question 5. 1. Derive Maxwell’s equations as the Euler-Lagrange equations of the action
S= [ de(-1E, ™), F, = 8,4, —0,A
- x(_z v )7 pr — Ypdy — Yp iy,

treating the components A,(x) as the dynamical variables. Write the equations in standard
from by identifying E* = —F% and ¢7*B* = —F%. Construct the energy-momentum tensor

for this theory.

2. Construct the energy-momentum tensor for this theory. Note that the usual procedure does
not result in a symmetric tensor. To remedy that, we can add to T* a term of the form
ONKMY | where KM is antisymmetric in its first two indices. Such an object is automatically

divergenceless, so
v = TR 4 gy K

is an equally good emergy-momentum tensor with the same globally conserved energy and

momentum. Show that this construction, with
K)xul/ _ FM/\AV,

leads to an energy-momentum tensor T that is symmetric and yields the standard formulae

for the electromagnetic energy and momentum densities:

5=;W+B%S:Ex3



Peskin € Schroeder 2.1.

Proof. 1. Let’s first calculate F*V. Given our identification with E? and B?, we have

FH =

Treating A, as our dynamical variables, we take

oL oL
a”(a(auA,,)) - 04,

=0

0 1
8#%[_1(8MAV - ayA#)(auA,, - 8VAH)] =0
0 1
aum[—z(ZﬁuAyﬁuA,, —20,A,0,A,)] =0

aﬂ[&(wﬂA, —49,4,)] =0

8, F™ =0

With the identification F% = —E?, F' = —¢7* Bk we have —%—? — 0;¢7* Bk = 0. Because I

always forget the Levi-Civita symbols, we recall that
€7k 9 v = (V x v)°

and thus —%—? + €9, BF =0, or

OF
VxB_E



2. With this construction, we have

T;LV = THv + a)\K)\uV

oL
_ v _ Qv UN AV
S0 A — L8+ P A
= —FMIOA, + iFwagW +ON(FrAAY)
— F#L(aLAu . aVAL) + iFleuuguu o 8}\F)\MAV

1
= F"FY + ZF,WF“”g’“’ —(0)A4”
This is now a viable energy-momentum tensor. We now 700 and 70

. 1
T = F"F) + TR

1
=FE'E, + EFN,,F“”

We then have

1 0 -E, -E, -E.|[0 -E
_ -1 E. 0 -B. B, ||E. o0

(,) =tr(FrFm) =
-1 E, B. 0 -B,||E B
-1/\E, -B, B, 0 E; —-B,

—E?
—-E2+ B2+ B

—-E}+ B2+ B2

This is equal to 2(B? — E2). Thus we have that 7# = E? + 12(B? — E?) = 1(E? + B?).

For T9% we have

04 j i 1 i
T0 = FYUF +5(B = B)°
) 1 )
= Elej B g™ + (B = B*)g"

=ExB=S

—-E?+ B+ B;




O

Question 6. Consider the the field theory of a complex-valued scalar field obeying the Klein-Gordon

equation. The action of this theory is

(a)

(b)

(c)

(d)

5= [ d'5(0,0'9" — m*0"0)

Find the conjugate momenta to ¢(x), ¢*(x) and the canonical commutation relations. Show

that the Hamiltonian is
H= /dsﬂj(ﬂ'*ﬂ' +Vo¢* -V +m2¢*p)

Compute the Heisenberg equation of motion for ¢(x) and show that it is indeed the Klein-

Gordon equation.

Diagonlize H by introducing creation and annihilation operators. Show that the theory con-

tains two sets of particles of mass m.

Rewrite the conserved charge
Q= /d?’x%(qﬁ*w* — )

in terms of creation and annihilation operators, and evaluate the charge of the particles of

each type.

Consider the case of two complex Klein-Gordon fields with the same mass. Label the fields
as ¢q(x), where a = 1,2. Show that there are now four conserved charges, one given by the

generalization of part (c), and the other three given by
Q' = /dgxi(qSZ(Ul)abW; - Wa(al)ab(lsb)

where o are the Pauli sigma matrices. Show that these three charges have the commutation
relations of angular momentum (SU(2)). Generalize these results to the case of n identical

complex scalar fields.



Peskin € Schroeder, 2.2.

Proof. (a) We have that p(x) = aaéc) o0 )fd4 0,9 M p—m?p*¢) = 8¢>( fd4 (0u@*gho” o—

m’¢*¢) =

—~V¢* -V —m?¢*¢) = (%(x [ d'a (3¢ —Ve* - Vo —m?¢¢).
Thus, ™ = gb*. Similarly, 7* = gb Since ¢, ¢* are the dynamical variables, the canonical

commutation relations are

[6(x), 7(y)] = [¢"(x), 7" ()] = i6@ (x — y),

[6(x), 6(y)] = [¢"(x),¢"(y)] = [7(x), w(y)] = [7"(x), 7" (y)] = 0

from quantization of the Klein-Gordon field given in the textbook. Given the equation for

the Hamiltonian, we have

H= / 2> i (x)di(x) - L]
a,b
= /d?’x[ﬂ*é* + 7 — L]
_ / Brldd™ + d°d - 1]

229" — ¢ + Vo - Vo™ +m? ™ ¢

I
\\\

Br[pd* + V- Vo' +m2¢*¢]

B[ n + Vo - Vo +m2¢* )



We want to compute i% via the Heisenberg Equation of Motion, so we calculate [¢, H].

i% (o, m
= [p(2"), / Fa(r*m +Vo* - Vo +m®¢*¢)]
- /d?’x[(b(x’), T + V" Vo +m?¢7 ]
_ /d?’x([d)(x’),w*ﬂ] +[6, Vo™ - Vol + m2[6,6"9))
- / Bxd® (2 — z)ir*(x)
=im*(x)
)

= [r*(2), / dPr(n*r + Vo* - Vo +m*¢*9)]

_ / ol (z'), 7 + Vo© - Vo + m26* 9]
(integrating by parts) = /d3x([7r*(x’), 7] + [ (2), 6" (=V? +m?)g))

_ / Pr6® (2 — 2)(—i) (—V2 + m2) ()

= i(V? —m?)s

Since 22 = ix* and 125 = (V2 — m2)$, so 2L = (V2 — m2)$, which is the Klein-Gordon

equation.

(b) Since ¢ satisfies the Klein-Gordon equation, and, in the same way, so does ¢*, we take the

Fourier transform to gain more insight into V2¢:

3
Plx) = / (;lwr)):s e®*¢(p) =
2 62

(5 7+ m?)6(p) = 0, [ + (2 + m?)6" (p) = 0

We write ¢ in terms of two real valued scalar free fields 11, 12, of which we already know the

theory:

_ i it
V2

_ 1 — it

g V2

, 07



Since 11, 19 are independent free fields, both must satisfy the harmonic oscillator equation:

L%+ (P +m)r =0, L[5 + (P +m)Y = 0=
[0 + (0 +m2)]r =0, [Z5 + (p? + m?)ypy =0 =

w1 = \/pf +m?, wy = \/pj +m?
Since the frequencies of the oscillators have independent momentums and ¢ is not hermitian,

we create two different creation and annihilation operators:

a; = w’ af = g — ——p;, i€ {1,2}

=\

where ¢ = ¢,q2 = ¢*,p1 = mw,ps = 7, with the notation in the spirit of Peskin and
Schroeder. These creation operators, given their frequencies, represent creating two different

particles with mass m. From the theory of a real-valued scalar free field, we know that

<a1<p>eip* +aj(p)e )

2wp

"= / (2m)3 2wp (al(p)e™ > + ay(p)e’P™)

ﬁ

The two different operators ensure that ¢ is not hermitian. From above we know that

T = ¢*, ™ = ¢, and, using our real-valued scalar free field as reference, we have

10



Finally, we rewrite our Hamiltonian in terms of our operators:

H = /d3x(7r*7r+ Vo* -V +m2¢*p)
/d3 //d3pd3p \/QW{ 1(p)al (p)e PRI — ay (p)ag(p')e! PP

— af(p)a] (p')e "P+P)* 4 af(p)ay(p)e P TP}

d3pd3 / i
. —ip-x 1p-X
// (27)5 QW[ ipa;(p)e + ipaz(p)e’™™]
[ip'ai (p')e’® > — ip'al(p’)e P ]

/ / i d {al(p)ar(p")e'® P> + a] (p)al(p/)e " (PHP)x
(2m) QW 1P 1\P)az(P

+ az(p)ay (p))e'PHP)* 4 gy (p)al(p')e! PP x})

3 W
= [ 2 0)al (5) — a1 ()aa(p) — ab(p)al (~p) + ab(paz(p)}
+ 5—{al(p)a(p) + a} (P)ab(~p) + az(p)ar (~p) + ax(p)a}(p)}

- mj{ai(p)al(p) +al(p)al(—p) + az(p)ai(—p) + az(p)ab(p)})

B / ull (2 {a, (p)al (p) — a1(p)az(—p) — ab(p)al (=p) + a}(p)as(p)}

(2m)3" 2
+ 2 QZR {a1(p)al(p) + al(p)al(—p) + az(p)ai(—p) + a}(p)az(p)}]

where in (70) the middle two terms have a positive sign because we subtract p-p’ = p- (—p).
Furthermore, since p # —p, we can commute our operators. Thus we have the Hamiltonian

as
d*p
H = /Wwp{alﬂ + agal}

Since this Hamiltonian is constructed purely out of constants and operators whose eigenvec-
tors are momentum eigenstates, our Hamiltonian is now diagonalized. The indices 1 and 2

represent the two particles of mass m.

(c) This is just plugging in our values for momentum and position and integrating, like the

11



previous problem. We have

Q= [dxjorn o)

= [t [ [ s il ) 4 an(p)e) s (p)e* — (o))

- Z(aj{ (p)e P a2(p)€zp'x)(a1 (p/)eip/'x + a;(p/)efip/'x)]

= [ @ [l 0)as (p) — al 0o} (p) + aa(p)es (~p) ~ ax(p)al(p)

+ [a](P)ar(p) + a} (P)a}(~p) — az(p)ai(~p) — az(p)a}(p)])

=5 [ gl Pl (e) — aa(pla (o)

This means that this theory has two particle types: one created by aJ{ (p) and one created by

al(p). In examining [Q, a!] |n) for some state n-particle state |n), we can deduce the charge.

It is easy to see that [a1,as] = 0, [a;, az] =1 since 11,12 are independent fields. Thus

Q. al] = a}, [Q, a}] = —a}

This means that the charges are valued at 1 unit for particles created by aJ{ and -1 for particles

created by a}].

(d) For two complex scalar fields, the lagrangian is then
L= 08,070"p1 — m*¢1d1 + 0,050 da — m> P o

We then have

oL oL oL oL

A — A Aod¥
@) " T 80,002 T 300,60 T 8(0,05)

= 0"91A¢1 + 0" 93 A¢s + 0" 1 APT + 0" P2 Ay — T

(@) =3 Ady = J"

Q= / Ba(ri Ay + 5 Abs + mAG + mAG})

12



If we set

b1
b2

we rewrite our theory as

L =(0,2)(0,9) — m*®'®

Q= /d%(dﬂm + (AD) D)
The symmetry of this lagrangian is
S MP

for M € U(2). We know that this system should have U(1) symmetry from the above

problem. Using the det : U(n) — U(1) map, we have a short exact sequence
SU(2)—U(2) = UQ)

giving us U(2) = SU(2) x U(1). For this reason, since U(1) is just a complex number, each
conserved charge from this symmetry has the commutation relations of SU(2). In order to
put this into a continuous symmetry picture, we exponentiate an element o € SU(2) is a

factor i(aq, ag) and take oy, a9 — 1:

P s ellon2)ogp
AD — icd

AD* — —icD

13



SU(2) is generated by the Pauli matrices, so we have conserved charges

Q' = i/d%(dﬁai@ —ofoid)

=i / B (0T, — a0t ye)

Generalizing to n independent identical complex scalar fields, we let ® = (¢4, ..., ¢,)7, and
our symmetry becomes U(n) = SU(n) x U(1), meaning the charges we get are of the same

form as what we got, but replacing the o* with n—dimensional skew-hermitian matrices.

Question 7. FEvaluate the function

3
(0] 6(2)d(y) [0) = D(w — y) = / (jﬂf;%lj

—ip-(z—y)

2

for (x —vy) spacelike so that (x —y)? = —r?, explicitly in terms of Bessel functions.

Proof. We have

d3p 1 —ip-(z—
D(l’—y):/W’EPe p( y)

27 T [e’e] dp pQ ) p
= do / dfsin 0 / — "7 "
/0 0 o (2m)3 \/p2 +m?

0 is the angle between p and (x — y), which also works for the conversion to spherical coordinates.

We then have

D(z — / /d981n9 Jn(pr) ””9
(=)= Gz F — Z (p

n=—oo
1 oo

C(2m)2 o \/p? +m2

/ dO sin 6(Jo (pr +QZZ"J (pr) cos(nd))

1
[2J0(pr —|—2Zz JIn pr)m

27T / ,/p +m2 el 1—n?2

2
[Jo(pr JFZJQW, pr Trﬁ]

]

w/ v

As in the book, the integrand has branch cuts on the imaginary axis starting at p = +im, so we

14



push the contour up to wrap around the upper branch cut. With p = —ip, we get

N —p? . = . 2
D(x —y) = e dpm[Jo(zpr) + Z Jgn(zpr)m}
n=1

Question 8. Recall the Lorentz commutation relations,
[TV, JPT) = i(g"P JHT — g Jve — P JHP 4 gho JVP)
1. Define the generators of rotations and boosts as
i L ik ik e 0i
L' = 56 J 5 K' = J 5

where i, j, k = 1,2,3. An infinitesimal Lorentz transformation can then be written ® — (1—if

L-if - K)®. Write the commutation relations of these vector operators explicitly. (For example,

[L}, L7] = i€k L*.) Show that the combinations
1 ) 1 .
Ji = 5(L—|—2K) and J_ = §(L —iK)

commute with one another and separately satisfy the commutation relations of angular momentum.

. The finite-dimensional representations of the rotation group correspond precisely to the allowed
values for angular momentum: integers or half-integers. The result of part (a) implies that all finite-
dimensional representations of the Lorentz group correspond to pairs of integers or half integers,
(j+,J-), corresponding to pairs of representations of the rotation group. Using the fact that J = o /2
in the spin-1/2 representation of angular momentum, write explicitly the transformation laws of the
2-component objects transforming according to the (%, 0) and (0, %) representations of the Lorentz

group. Show that these correspond precisely to the transformations of 1y and Vg given by

¢LH(1*Z'9'%*5' )¥rs

N[ o Q

7//R—>(1_i0'%+5' )R;

15



3. The identity o7 = —0200? allows us to rewrite the 1)y, transformation in the unitarily equivalent

form
W (140248 D),

where ' = ¢YTo?. Using this law, we can represent the object that transforms as (%, %) as a
2 X 2 matrix that has the Yg transformation law on the left and, simultaneously, the transposed vy,

transformation on the right. Parametrize this matrix as

VOV vi—iv?

Vigiv? vo—vs3
Show that the object V* transforms as a 4-vector.

Proof. 1. First we calculate [L?, L’]. We assume that the metric is (+,—,—, —), as per the

convention in Peskin and Schroeder.

[Li7Lj] —_ l(eimnjmnejlkjlk _ 6jllekeimnJmn)
1 imn _jlk 1k
= —€ e’ [Jmn7J ]
— ieimneﬂki(g"l(]mk . gmlJnk . gnkJml + gmkjnl)
- iﬁimnﬁj (gl ke 4 gmi nk . gnk gmi _ gmik pnl)
= il(eimlejknjmk + emneImk gk 4 gimn gjin gml eimnejmljnl)
4
(rewrite indices) = i(e™lelkl Jmk)
= Z((smgmk — 5ik5jm)Jmk

= i(8j; ™ — )

= —iJ7"

Since J¥ = —i(z'VI — 29V"), we have J¥ = —JJ'. Notice that L* = 1k Ji so Ji =

—ek Lk so [Li, L] = iJ9 =ik L.

16



Similarly, we look at [K?, K7] = [J%, J%].

[Kl’KJ} — '(giOJOj _QOOJij _gijJOO +ngJio)
= i(=JY +87J%)
= —iJ"

= —jek Lk

Now we examine [L?, K7]:

[LZ’K]] — [iezmkjmk:,JO]]

— %Eimk[Jmk7 JOj]

— %Eimk(gkOij o ngJk] o ngJmO +ngJkO)

_ %Eimk(é‘kojmj - 5m0t]kj + 5kjjm0 o 6ijk:0)

— %eimk(ékjjmo o 5mjjk0)
— %(eimjjmo _ eiijkO)

_ §(€szJm0 +€lkjjk0)
— ieiijmO

= —jetmd JOm

=g K™
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Knowing this, the commutation relations for J4 are:

o 1 . 1. )
T = (LK), S (1 + K]
= E[Li L)+ E[Li K| +£[Ki L) - 1[Ki K|
477 477 4 ’ 4 ’
1 .. i . i 1 ..
— —s ik k Ve ijk gk . jik gk S igk Tk
4ze L +4Z€ K 4Z€ K +4ze L
1 ..
= iie”k(Lk—l—iK’“)
i 7d Loy iy 1 VR e
5, ) = (L = iKY, S (L — i)
=) - L k) - Lk ) - L k)
477 477 4 ’ 4 ’
1. .. T, T, 1. ..
— Zckrk _ 2o ijk ok s jik rok Saidk Tk
4Z€ L 4’L€ K +4ze K +4ze L

1 ..
= 51'6”’“@’“ —iK")

T, ] = [%(Li +iKi),%(Lj —iK7)]

1 ] i 1

=—[L' 7] - - [L', K’ KL K' KJ
T D] = I K+ IR D)+ K K
1 .. ;. L 1 ..
_ Ziezﬂch _ iiezijk _ %iejszk _ Z,L-GZJkLk
=0
2. In the (j4+,j-) = (%,0) case, we have J, = 7 in the spin—% representation of the rotation
group. To ensure this, we set L = 0,K = —io. Similarly, for the (j;,j_) case, we set

L = 0,K = io0. The Lorentz operators are given by ea:p[fi%(F)L + ifK)] for Jy. Taylor
expanding for infinitesimal 6, 8, and neglecting >1 order terms of § and 3, the infinitesimal

transformations are given by

<I>%(1—i9~%:|:ﬁ-

o1 Q

3. Notice that

VoLV VL y2
=Vto,
Viqivz vo—y3
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Thus the field is given by ¥rV*o,9T o2, and the field transforms by
brVio,Te? = (1—if - % +8- %)wRV“UquJZ(l +if- g +8- %)
Expanding this out, we have this equal to

1 o 1 1
(1- %eﬂeﬂ + 3B0) (VO 4+ Vieh) (1 + %9]9] +56707) = (1 %GH)J + 3870V
1
FVO(1+ %9]9] +5876)
+ (Vo' — %GZVZO']O'Z + §ﬂj Vialo)
+ (Vo' + %Vlﬁjcrlcrj + ivlﬂja’a])
=(1+plo?)V°
+2V%" + iﬁjvz{aj, o'} + %97‘”[02,07]
= (14 Floh)VO
+2Viel 4+ %w’v"z&; + %ajvi%e”kak
= (1+pIa?)V°

+ (207 — G ik gh 4 BV

This is a Lorentz boost, so VO + Vi = V*# is a Lorentz 4-vector.

Question 9. Derive the Gordon identity,

where ¢ = (p' — p).
Proof. We see a ic* in there, so we’ll probably want to establish some [y#, 4] in there, since this

commutator is equal to —2ic*”. In equation 3.46 in Peskin & Schroeder, we have, from the Dirac

Equation,

(Y*pp —m)u(p) =0
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If we try to come up with a similar equation with the adjoint u'(p’), if we throw in a 7° we get

the relation:

Thus we slip in an m factor to consider u(p’)y*mu(p) have

a(p’ )y mu(p) = a(@ )y pou(p)

a(p')ymA"u(p) = u(p')y"pl, 7" u(p)
Adding these two equations, we get
a(p’)2my*u(p) = (') (Vv v + "D, )u(p)
We can express this in two ways, one where there is only v#~+* and one where there is only ¥ ~v*:

a(p)2mytu(p) = a(p') (Y pu + 49", + 2i0" p), Ju(p),

a(p')2mytu(p) = a(p') (Yo + ¥y, — 20" p, )u(p)
Adding these together, we get
a(p")dmny"u(p) = a(p") ({v", 7"}y + p),) + 2i0™ (p), — pu))u(p)

O

Question 10. Let kfy, kY be fized 4-vectors satisfying ki = 0,k% = —1,ko - k1 = 0. Define basic
spinors in the following way: Let urg be the left-handed spinor for a fermion with momentum k.

Let uro = Fyuro. Then, for any p such that p is lightlike (p*> = 0), define

1 1
R — d = — .
ur, (p) \/ﬂ?uRO ana uRr (p) \/ﬂpULO

20



1. Show that fquro = 0. Show that, for any lightlike p, pur(p) = pur(P) = 0.

2. For the choices kg = (E,0,0,—FE),ky = (0,1,0,0), construct uro, uro,ur(p), and ur(p)

explicitly.

3. Define the spinor products s(p1,p2) and t(p1,p2), for p1,p2 lightlike, by

s(p1,p2) = Ur(p1)ur(p2), t(p1,p2) = ur(p1)ur(p2).

Using the explicit forms for the uy given in part 2, compute the spinor products explicitly and

show that t(p1,p2) = (s(p2,p1))* and s(p1,p2) = —s(p2,p1). In addition, show that

|s(p1,p2)|* = 2p1 - pa.

Thus the spinor products are the square roots of 4-vectors dot products.

Proof. With the definition, we have

Fokiuro = v (ko)uy"” (k1)vuro
= [2¢"" — 4"¥"](ko) u(k1)vuro
=ko - kiuro — ’VUV”(/fo)u(lﬁ)uuLo

=0- kokluLO

1. Thus fok,uro must be 0.

For any lightlike p, the computation follows the same way.

1
pur(p) = ﬁ]ﬁ]ﬁkl“m
1
= m[%“” — VY pupukiuro

1
= v R

since g"'p,p, = 0 for p lightlike. That pur(p) = 0 follows in the same way.

2. urg is the left Weyl spinor of a fermion with momentum kg. From 3.50 in Peskin and

21



Schroeder, we have

vV ko . Ufs
Vo 5e

u®(ko) =

where s = 1 we’ll decide corresponds to the left-handed spinor, and s = 2 corresponds to the

right-handed one. For ky = (F,0,0, —FE), we have

2E 0
! 1 0 o
0 O 0 0
uro = ’U,l(ko) = — =V2F
0 0
0 0 . ¢l
0 2E 0 1

00 0 -1
00 -1 0
%1:
01 0 0
1 0 0 0
0 —1 1 0
'3 '3
0 0 0 0
— URo = kluL() =V2F =V2F
0 0 0 0
¢t &2
1 0 0 1

For ¢! := (&1,&)7T, we therefore have 2 = (—&;,£1)T, and thus

&1 -

0 0
urg = V2FE ,URy = V2FE

0 0

&2 &
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1

Multiplying these by \/2}17_ ” P= N

Po+P3  p1—ip2

p1+ip2  Po— D3
ur,(p) and ug(p), respectively, we get:

(=p1 +ip2)&1

1 (po + p3)&1

= Pops —(po + p3)&2

—(p1 +ip2)&e

3. Writing out s(p1,p2), we have

T
(-t —ip{)es
1 (s +p§)es 0 Id
PO 400 | 4 e 1d 0
(" —ip” )i

\/P(l) \/P +pi”

+08 + ) (0 + ipi)eses —

1

, U = T
~(P) VDo +p3

Po — D3

—p1 —1ip2  po+DP3

1

(2) + p(2)

("

(—p1 +ip2)&2
(p
(po + p3)&1

(p1 +ip2)&1

—p1 +ip2

to get
0

0

0 + p3)é2

(=p” +ins”)ea
(5" +p5)&n
(0 + e

—(p? +ip$?)e

(057 + o5 (—p + ipherer + 0 + P — ipi)ere

+ o) (P +ip)eses]

For the last expression, the two terms in the bracket on the top line are of opposite sign if p(*)

and p(® are swapped, and the same goes for the bottom line. Thus s(p1, p2) = —s(p2, p1)-
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t(p1,p2) is calculated in the same way:

(—p — ip{D)et (=pi" + ips)é

1 (5" + i 0 Id 1 (v” + 25762

Vo0 | 0+ | Lm0 ) Voo | o2 4006

(—pi" +ips)es v + i)
=8 + P (=pt + ip)g56 + (0 + P ) (—p” + inf 56

B 1 1
\/p[()m +p§1) \/péQ)-i-péz

+(08 + P (=Pt — ipiheren + 050 + 5 (0P + ip$)e e

Swapping p") and p(? and taking the complex conjugate of this, we get

1 1

Vi o+

B o) (=Y —ipi)esea + () + pi0) (= — ips?)esE

+ (o8 + ) (=P + ipP)ere + 02 + pP) (Y — ip$)eré)

which is equal to s(p1,p2) above.

We write |s(p1,p2)|? = s(p1,p2)s(p1,p2)* as

1

\/p(<)1>+p31> \/p<2>+p<2)

\/pu) + V) \/p@)

[(A+ B)§i&r + (A" + BY)658,)]

(A" + B*)&1& + (A + B)&3&2]

where

A=)+ (= + inf”)

B =y +057) 0"~ ins")
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Giving us

[|[A+ B]2(&56656 + 52525252) [(A+ ) + (A" + B*)?JE1 616580
@5 + 5 (08 + P
_ [JA+ BI2((§&1 + £362) — 261616562) + (A+B) + (A" + B*)%J61 616580

@5 + 5 (08 + P

. . . A+B|?
We assume ¢ is normalized, so we first examine —m |(1)+ |(2) O]
(o "+p3 ")-(Py +p3 )

(57 + p)ptH — @5 + pi)p(P)?

|A+ BJ* = Py

+(( (1) _|_pg ))p§2) ( (2) +p(2)) (1))

2 2 1 1 1 2) (2 2
= (p} ( )+p( )) (pgl)pg ) —&—pgl)p(g )) +(p é)—i—pgl))Q(p( ) )—i—pg )pé ))

205 + P S + P (0P + p s

Dividing by (p{" + p§")(p$? + p$), we get

(2) (2)

A+ B|? P,
) |<> <|2> @ (?1 ?>)(p1 o 05 s)
(Po +P3 Yo +p35) (Po 3 )
(1)
L ? f’ )(pf)p§2 + 8P
(5? + %)

—2(p (2)p(2)+p(2)p(1))

08 055 = 67p6” - ps7psY) = (067 — PN (Y + p57), since p s

Noting that (p;”’p; D3 "Dy
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lightlike for s € {1, 2}, gives

|A+ BJ? Y+ ) o
(Po Py’ —p3'P3")
w5 + s + 7))+ ")
@)
Py’ +Dp
+ E 0 i’ ); PP s — p i)
3

2(p7pt? + iV pi)

= 6”287 (0" — 24")

1 1 2 2
+ 05" + 28" w” — i)

2(p(2)p(2) +p(2)p(1))

= 282 22— 2 — 2

EPCONC)

2 2

Things get hairy if we examine (A+fp)<1j_.:?1;§j(3 ;);2!;?;]3' £7€18582. We get the proof that
0

|s(p1,p2)|? = 2p1 - p if either & or & is equal to 0, but if both are nonzero, this is not the

case:

A?42AB + B? 4 (A*)? +2A*B* + (B*)? — 2(A + B)(A* + B)
= A2+ 2AB + B* + (A*)? + 24*B* + (B*)® — 2AA* — 2AB* — 2A*B — 2BB*
= (A—A"? +(B—-DB*)>+2[AB+ A*B* — AB* — A*B]
= (2Im(A))* + (2Im(B))* + 2[A(B — B*) + A*(B* — B)]
= 4[Im(A)? + Im(B)?] + 2[A2Im(B) — A*2Im(B)]
= 4[Im(A)? + Im(B)? + 2Im(B)Im(A)]
= 4(Im(A) + Im(B))?

41 + pyips? — @8 + p )it

If, say, p1 = (X, X,0,0) and p; = (¥,0,Y,0), this is nonzero. For now, though, we can set

¢ =(1,0)T, and complete the proof.
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Question 11. Recall that one can write a relativistic equation for a massless 2-component fermion
field that transforms as the upper two components of a Dirac spinor (yr ). Call such a 2-component

field xo(x),a =1,2.

1. Show that it is possible to write an equation for x(x) as a massive field in the following way:
i7 - Ox —imo*x* =0

That is, show, first, that this equation is relativistically invariant and, second, that it implies
the Klein-Gordon equation, (0> + m?)x = 0. This form of the fermion mass is called a

Majorana mass term.

2. Grassmann numbers «, 8 satisfy af = —fa. A Grassmann field £(x) can be expanded in a

basis of functions as

£(z) = Z QG ()

where the ¢n(x) are orthogonal c-number functions and the o, are a set of independent
Grassmann numbers. Define the complex conjugate of a product of Grassmann numbers to

reverse the order:

Show that the classical action,

m T 2. %

S = /d4x[><TiE-6x+ 5 (xTo?*x — xTo*xM)],

(where xT = (x*)T') is real S* = S), and that varying this S with respect to x and x* yields

the Majorana equation.

8. We can rewrite the 4-component Dirac field in terms of two 2-component spinors:

Yi(@) = x1(2), ¥r(x) = i0° x5 (@)
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Rewrite the Dirac Lagrangian in terms of x1 and x2 and note the form of the mass term.

4. Show that the previous action has a global symmetry. Compute the divergences of the currents

I =xTary, JH = xiatx1 — xba' xe,

for the theories of parts 2 and 3 of this question, respectively, and relate your results to the
symmetries of these theories. Comstruct a theory of N free massive 2-component fermion

fields with O(n) symmetry.

5. Quantize the theory of parts 1) and 2). HINT: Compare the top two indices of the quantized

Dirac field.

Proof. 1. Transforming this expression by a Lorentz boost gives

i7 - Ox(x) — imo?x*(z) — i7 - Ox(A™ x) — imo?x* (A1)
= i&”g,w(A_l)‘ia)‘Aéx(A_lw) - imO'2A%X*(A_1$)
- A%A;iﬁ”A%gw(A_l)’;E)’\x(A_lx)

— imA%A;UQAéx*(A_lx)

Noting that o is a 2 x 2-representation of the Dirac algebra, we have AIIE”A% = AKE’\.
2

Thus this last expression is equal to

A%A/”\iﬁ)‘gu,,(A_l)fa‘x(A_lx) — imAéazx*(A_lm)

= Ay [i71 900" x(A ™ 2) — imo® X (A~ )]

1
2

= A1[iz - Ox(A 2) — ima®x* (A" )]

1
2

=0

Thus this equation is relativistically invariant.
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We have the system of equations

0o — 05 01 —idy X1
O1+1i02 Op+ 03 X2
(8 — 0s) o) 0 s Re(x1)
0 (Oo + 03) —0o 0 Re(x2)
— =m
0 0 (B-03) O iIm(x1)
s 0 o (G0 +05) | \ilm(x2)
Thus we recast i7 - Oy — imo?x* =0 as
(0o — O3) o 0 Oy —m Re(x1)
O (0o +03) —0x+m 0 Re(x2)
0 —0y+m (0—05) O ilm(x1)
8y —m 0 o (0o +05) | \ilm(x2)
Call this 4 x 4 operator M. It is easy to see that
(0 — O3) O 0 1))
diagonal[82] / g (60 + &) B !
0 —0o (0o — 03) 01
02 0 01 (0o + 03)
(0o + 03) -0 0 — 0o
B -0 (0o — O3) 1)) 0
0 (2 (0o + 03) —0;
—0o 0 -0 (0o — O3)
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Let M? be defined as

(9o + 03) -0 0 —0y —m
-0 (0o —303) O2+m 0
0 Oa+m (O + 03) -0
—0s —m 0 —01 (0o — 03)

We then have, acting on both sides of My = 0 by M?,

MMy = diag[0? + m?]x = (0> + m?*)x =0

2. In considering the first term, we have, since iz - 9y — imo?x* = 0,

x'i@ - 0x = xTimo?x* = xix2 — x1X%5
= XXz + (XIx2)"

= Re(x7x2)

We proceed with the second term in the same way:

m N
— "oy —xTo?x*) =

5 (X1Xx2 — X2X1 — X1X5 + X5X1)

SERSIE

(Re(x1x2) — Re(x2x1))

We expand the Lagrangian to get

L =ix7(0 — 93)x1 +ixi (=01 +1i02)x2
+ix7 (=01 — i02)x1 + ix3 (0o + 03) X2

+ 7[—Z><1XQ +ixax1 + iXIX3 — iX3X1)
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Varying both y and x*, we get the Euler-Lagrange equations as

oL oL | —mxz | Goxi — Oixs —id2x5 — Osx7
— = i
ox 3(8;0()

I
~

mxi Ooxs — 01X +102X7 + Do X5

imo’x* =iz - Ox

oL
ox*

| (G0 = 03)x1 + (=01 +i02)x2 — mX3 0
1 =
(=01 —102)x1 + (0o + 03)x2 — mX]

iz - Ox — imo*y =0

3. In terms of x; and y2, we have

|0 1 0 o9, 01 X1
(M —ixgo) € —m )
1 0/ \#9, o 1 0) \io2xs
(70, o 0 1 1
(M -ingor) G —m )
0  o"dy 10 io?x%

= ix[5"0x1 + ix3 020" 0?9, — Ximio® X5 + xdmicx:

= ix1d" 8, x1 + ix3 70X — XImio?xs + X3 mio®xa

The mass term has the x1,2 swapped and they are conjugates of each other.

4. The previous part has a global symmetry of x; — €'*x1,x2 — €*2x2. When computing

9, (xTa"x), we start with the product rule:

9 (x'7"x) = 9. x5 x + x50, x
= (XTEH(?MX)T + XTEMa/J«X
= 2Re(x'"9,.x)

=0
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This is zero because, as shown above, i x XTE“F)'#X is real. In the same way, we have

(Q)M(x]iﬁuxl — X;EMXQ) = 2Re(XIE“8#X1) — 2R€(X;EM8MX2)
=0 —2Re((x30"0ux3)")

=0

These are the Noether conserved Noether currents corresponding to the x — e*®*y and

X1 — €%y, x2 — e'*2yo symmetries, respectively.

For an N-massive 2-component fermion system with O(N) symmetry, we first note that

symmetry is given by multiplying (x1, ..., x5)7, where y is a 2-component fermion field, by

O(N) ® Idy, where ® is the Kronecker product. The action is then just taken from part 2:

T T
X1 ?“aﬂ X1 X1 o? X1
S:/&ﬂ o - N
2
XN o"d, XN XN o? XN
T *
X1 o? X1
- )l
XN o? XN

This has O(N) symmetry, since, for

ni1 niN

nni nNN

32



we have

(O(N) ® Idy)"

. n11
o0,
ni1
n21
[oialoM
n21
. nN1
ot0,
nN1

lejate
(O(N) @ Idy)"
12
70,
ni2
n22
ato,
N22
nN2
79,
nn2
79, [1]
7" 0,[0]
79, [0]
o2

The calculation is done the same way for (O(N) ® Idg)T

(O(N) © Idy)

"o,
ninN
a0,
nin
NaN
a0,
NnaN
nNN
a0,
nNN
"0,[0] "0,[0]
a"0,[1] "0,,[0]
"0,[0] a0, [1]

(O(N) ® Idy).

0.2

5. We take the hint given in Peskin & Schroeder, and examine the quantized Dirac field. We

showed in part 3 that a Dirac field can be written in terms of y, so we combine these two

identities:

YL
YR

i0°X5

S (aput(p)e P + byt (p)e)



Thus we have

d3p 1 s s _—ipx s 5 _ip-x
Xl:/(%)s > (apyp-o€e P+ b\ pane )

43 1
T W e s

1 0
Taking the previous problem as guidance, we’ll let £ = and &2 = . From 3.144 in

0 1
Peskin & Schroeder, we know that

0 —io? /P o&®
io? 0 \p-o&®

—io®\/p-5E = (yp-on®)*,
o’\/p-on® =—(\p-o&)*

We can use this to get rid of the peskiny s, and use the identity oco? = o?(—0*):

d® _
X1 = / L TE Z sVDoE e —bilio?\/p - 5Tt

/ o mZ NV S AN T S

d3 z ST* —ip-2
SRS —

d3 * s _—ip-x
/ \/ﬁz VPG T — bl g ee )

Plugging this into our initial Majorana equation, we have

- 5/ @’p \/ﬁz ap\/p-o€’e —ipw bsh/ Coio?Es e )

:ima2/ @p \/ﬁz “Vp-o&le ipx b;}‘*mwzgse—mm)

dp
_m/ Z p Fio fs ip-x baT*\/ﬁ s sz
\/2E

Since (p-7)(p- o) = m?, the equation is satisfied if and only if ay = —bfj. The computation
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for yo follows in the same way. Thus we have

d3p 1 s s _—ip-x S% . s _ip-x
= [ LT oy i),

e

S

d3p 1 ) 9 i
— aS .o Seflpu’l) _ aS* . O_Zo_ Selp'ZIJ
X2 / @) /2B, ES:( oD 0E oD 3 )

To check that these satisfy the canonical anti-commutation relation, first we compute {x1, X£}3

d*pd3q
{xaxdt = / g

« Z {ap’aaT}\/ﬁ sefi(pquy)frf\/ﬁ

2E 2E4

_ {ap,aT*T} /p-o€se” i(p-z+q-y) frTm /q- o
{ EE rT} /r O’(ZO’ )Tgs i(p-xztq- y)ng 0o
—{a¥, al T hpo(io?) ee P io? [y

Bp 1 ) )
— = —ip-(z—y) _ ip-(z—y)
= / 2n)7 28, [Epe Epe ]

%5(3)(y —-x)=0

O —y) -

The other commutators are computed in a similar way. We have

i ddp 1 —ip-(x— ip-(z—
{XlaX-{} = {X27X;} = / (27T)3 ﬁ[Epe P ( y) + EPG P( y)]
p

=6 (x-y)

With other conjugate-transpose combinations given, these translate to the commutators of
the operators in the quantized Dirac field, which all turn to 0. Therefore we have our

canonical anticommutation relations:

{Xaa Xl];} = 6(3) (X - y)(sab
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The conjugate momentum is ix', so the Hamiltonian is then

H= /d3 z[xtiol9;x — 7(x o®x — x'o?x*)]

We start with the first term:

/d3xXTiJj8jX: /d?’xqujajx

/dS / d3pd3
)6 2E 2E4

Z [agg” N qjefir-(qu) ai\q - oE’

s

+alert praol g PO el g gio e

+ap € (o) /P a0l ge T ag g
+ap 1€ (i0%) T Vool ge TV ag T Tioe]

_/d?’pd3 1 y
) (@2n)? \2E,2E,
> lapietyp-ooiq; 6P (¢ — p)ai/g- o€’

7,8

+ a’“Tng\/ﬁng o (p+ q)ag “/q - oio?E®

+ap e (i0®) T\ p9074;0%) (p+ q)ag /g o€

+ap et (io®)T o0l 46 (p — @)a a - Tio?E]
/ Z g€ /D apjo’ay/p- o€’

+agl ¢ ypo(=pj)olalyy/=p- oio?E®
+ a;*TfrT(iJ2)T /b~ U(—pj)ajafp /—p - o&f
+a;*T§TT(w) V- O’ij'] *\/p - oic’E]
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Notice that p;ol = %(p -0 —p-07), so this becomes

- J e o -

+G£T£TT((])~U)2 )ZO‘ Eq s*

+ e (10?) T (0 0)? - m)Evas,

@ (i0))T (- 0)? = m)io®€ ey
Using the identity (p-o0)* = EZ + |p|?, we have (p-0)* —m? = |p|?, so we have
. 1
Jatrdiaion = [ g Slaipla - oy
S

We now check out [ d3z% (x"io?y):

d3pd3q
B (T / Bz /
/ Octio®x) m)% \/2Ep2Eq

— Z[QET€ST \/ﬁ\/ﬁgrare i(pt+q)-x
s,

+als)T€sT \/ﬁ\/ﬁzojgr Tk 71(1) q)-x
+ S*Té-sT \/ﬁ\/ﬁ "o —i(q—p)-x
+ s*TgsT \/ﬁ\/ﬁla2frﬂl;r* i(g+p)-z ]
m 1
=— [ d®p—
2 / Pop.”

Z sTgsT \/ﬁ\/ﬁrr

S,7

+ ai)T£STi02 \/ﬁ\/ﬁio%ra;*

T s*TgsT NN e

4 s*TgsT o2\/p-o\p Gic*"a )
= % /d3p2£1?p ;[—Q;Tma;* +a;*Tm2a§]

Since xTio?x* = (xTio%x)*, we know that %XTUQ)C* is ””XTU X. Thus the entire

B3z (xTo?x — xTo?x*) term is fd3p2ép > lasTm2al — astm?asy].
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Combining this with the first term, we have

1 S* S S S*
1= [ a3 o™l + ma - 0l (pl? + m)ay]

5 1
3 T T
f/d Py E lap™ ap, — ay ap']
S
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