
Topics in Topology Lecture Notes

Alec Lau

Live-Teχed lectures on 4-manifolds by Prof. Ciprian Manolescu for Math 283a in Spring 2020.

Here are some highlights of the course:

1. There exist smooth 4-manifolds X1, X2 such that X1 is homeomorphic but not diffeomorphic

to X2. Dimension four is the first dimension where this happens.

2. The Thom Conjecture: For a smoothly embedded surface Σ ⊂ CP 2, [Σ] = d[CP 1] ∈

H2(CP 2,Z) ∼= Z. Then genus g(Σ) ≥ (d−1)(d−2)
2 (= the genus of algebraic curves in that

class). Proved by Kronheimer and Mrowka.

3. The Milnor Conjecture: For Tp,q a torus knot, (p twists, q strands), and Σ ⊂ B4 a smoothly

properly embedded surface, ∂Σ = Σ ∩ ∂B4 = Tp,q, and g(Σ) ≥ (p−1)(q−1)
2 . Also proved by

Kronheimer and Mrowka.

The original proofs of these used gauge theory; Yang-Mills eqs, Seiberg-Witten eqs. Newer proofs

use algebraic topology, namely Khovanov homology.
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1 Classifying 4-manifolds, bilinear forms

A basic problem in 4-dimensional topology is to classify smooth 4-manifolds. This is unfortu-

nately hopeless, on account of the following two theorems:

Theorem 1. (Atiyah & Rubin, 1955) There does not exist an algorithm which determines whether

a given presentation of a group yields the trivial group.

Theorem 2. (Markov 1960s) Given a finitely presented group G, there exists a smooth closed

4-manifold X with π1(X) = G.

Thus somehow 4-manifolds are at least as complicated as groups. This works because a compact

4-manifold allows a triangulation which gives finite generators.

Proof. 1. Step 1. π1(X1#X2) = π1(X1) ∗ π1(X2) where # is the connected sum.

π1(Xi) = π1(Xi −B4) ∗π1(S3) π1(B4) (1)

= π1(Xi −B4) (2)

Thus π1(X1 −B4) ∗π1(S3) π1(X2 −B4) = π1(X1) ∗ π1(X2)
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2. Step 2. G = 〈g1, ..., gl|r1, ..., rr〉. Let N = (S1×S3)#...#(S1×S3) with l products. π1(S1×

S3) ∼= Z⇒ π1(N) = Z ∗ ... ∗ Z = 〈g1, ..., gl〉.

3. Step 3. ri(= g5
1g
−1
4 ...) represented by a loop γi ⊂ N . Transversality (1+1<4) implies γi can

be assumed embedded and disjoint.

4. Do surgery on loops: γ ⊂ N a tubular neighborhood ∼= S1 ×B3:

∂(N − (S1 ×B3)) = S1 × S2 = ∂(B2 × S2). (3)

Let Ñ = (N − (S1 ×B3))) ∪S1×S2 (B2 × S2). Then

π1(Ñ) = π1(N − (S1 ×B3)) ∗Z 1 = (4)

π1(N) = π1(N − (S1 ×B3)) ∗Z Z = π1(N − (S1 ×B3)) (5)

See 1 Do this for all γi simultaneously. Then we get a new 4-manifold M with π1(M) =

〈g1, ..., gl|r1, ..., rm〉 = G.

B2 × S2

γ
N

Figure 1: Surgery to remove a nontrivial loop
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Thus we can construct 4-manifolds with fundamental group equal to any group, and through

the previous theorem we can’t classify 4-manifolds. In the homework there is a calculation that

the Euler characteristic of the resulting manifold via surgery χ(M) = 2− 2l + 2m.

Since we can’t classify 4-manifolds, let’s consider a more tractable problem: classify closed,

simply connected, smooth 4-manifolds. Notice that trivial fundamental group implies that the

smooth 4-manifold is orientable. Furthermore, this classification should work up to diffeomorphism.

We could also classify closed, simply connected topological 4-manifolds up to homeomorphism, or,

even weaker, homotopy equivalence. Consider X4 closed oriented, π1 = 1. We can abelianize to

get H1 = 0, by Poincaré Duality we get H3 = 0 and by the Universal Coefficient Theorem we get

H3 = 0. Also H4 = H4 = H0 = H0 = Z.

H2 = H2 = Hom(H2,Z)⊕ Ext(H1,Z) = Hom(H2,Z) = Z (6)

which is torsion free. Let r = b2(X) = b+2 (X) + b−2 (X). By Hurewicz, π2 = H2. The cup product

gives Q : H2 ×H2 → H4 ∼= Z (using orientation), given by

(a, b)→ (a ^ b)[X] (7)

We are given a symmetric, unimodular (det=1) bilinear form Q : Zr × Zr → Z. Q is symmetric

over R: bilinear forms are classified by rank r and signature σ. Over z it’s more complicated to

classify Qs.

Definition 1. A form Q is called even if Q(a, a) ≡ 0mod2,∀a ∈ Zr.

e.g.

0 1

1 0

 (8)

We can see that Q([x, y], [x, y]) = 2xy. If Q1, Q2 are rank 2 signature 0, they are equivalent over

R not over Z.

Remark 1. H2 ∼= H2 we can view Q : H2(X)×H2(X)→ Z, (a, b)→ a · b the intersection form.

Theorem 3. X4 smooth implies that every α ∈ H2(X;Z) is represented by [Σ] for some embedded

smooth surface Σ ⊂ X.

4



Proof. {complex line bundles over X} modulo isomorphism is isomorphic to H2(X;Z) given by

E 7→ c1(E), the first chern class. Given α ∈ H2(X;Z). Σ = s−1
a (0), where sa is a generic section

of La a line bundle. PD[Σ] = a (Poincaré Dual). Σ is smooth by transversality.

Hence [Σ1] · [Σ2] make Σ1,Σ2 transverse, count intersection points with signs.

Remark 2. π2 = H2 implies that ever class α ∈ H2 is represented as the image of f : S2 → X.

Generically one can make f immersed, but not embedded. Thus we have the minimum genus

problem: min{g(Σ)|Σ embedded, [Σ] = a} = ???

Here are some examples of smooth closed, simply-connected 4-manifolds.

Example 1. S4. Then Q = 0.

Example 2. CP 2 with complex orientation. H2 = Z. Then Q = (1).

Example 3. CP 2 with reverse orientation. Q = (−1).

Example 4. S2 × S2. H2(Z⊕ Z), ([S2 × pt], [pt× S2]). Then Q equals Pauli X.

Example 5. Connected sums X = X1#X2.

Qx =

QX1
0

0 QX2

 = QX1
⊕QX2

(9)

Corollary 1. There is no orientation reversing self-diffeomorphism of CP 2. CP 2 × CP 2 is not

homotopy equivalent to S2 × S2.

Proof. (1) 6= (−1). Pauli Y is not equal to [[1,0][0,-1]]

Theorem 4. (Whitehead) X1, X2 closed simply connected topological 4-manifolds. Then X1 is

homotopy equivalent to X2 if and only if QX1
∼= QX2

(over Z).

Proof. (Sketch) Look at generators of H2(X) = H2(X − B4) = π2(X − B4) because π1 is trivial.

These generators are represented by some maps

fi : S2 → X −B4, i = 1, ..., r (10)

5



where r is is the second Betti number b2(X). Construct the map

f : ∧ri=1S
2 → X −B4 (11)

which is an isomorphism on H∗. Thus you can use the relative Hurewicz Theorem to show that this

is an isommorphism on π∗. Then via a separate Whitehead theorem f is a homotopy equivalence.

Then X ∼ (∨ri=1S
2 ∪h e4, h : S3 → ∨ri=1S

2. Then we claim that

π3(∨ri=1S
2) = {symmetric r × r matrices on Z} (12)

h→ Q (13)

Then we use the fact that π3(S3) = Z. This is because, for a map S3 h−→ S2, we have L := h−1(x ∈

S2) is a framed link. Then we get [h] ∈ π3(S2) = Z which is the linking number of L,L′ (where

L′ := h−1(x′)). This is called the Pontryagin-Thom construction. Thus for h general:

h : S3 → ∨ri=1S
2 (14)

xi ∈ S2
i (15)

x′i ∈ S2
L (16)

And

Qij = lk(Li, L
′
j) (17)

Thus this proof all reduces to algebraic topology.

Here is a much harder theorem, with homeomorphism:

Theorem 5. (Freedman 1982)

1. For every unimodular symmetric bilinear form Q, there exists a topological, simply connected,

closed 4-manifold X4 with QX ∼= Q.

2. If Q is even (Q(a, a) ≡ 0)mod2 for all a, then X is unique up to homeomorphism.
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3. If Q is odd (not even), then there are exactly 2 homeomorphism types of such X and at most

one of them carries a smooth structure (is a smooth manifold).

Remark 3. If Q is even, we don’t know if it’s smooth.

Corollary 2. If X is smooth, then X is determined by QX up to homeomorphism.

Thus we have homeomorphism invariants of simply connected X4: QX ,KSX ∈ Z/2

(the Kirby-Siefenmann invariant). In any dimension n we have

KSX ∈ H4(X;Z/2) (18)

where X is a topological manifold. If KSX 6= 0, then X is not smooth. The point is then that if

QX is even, then KSX = 0. If QX odd, then KSX = 0 or 1.

Consider then a Q = (1). This is the form of CP 2. There exists a topological 4-manifold, ∗CP 2

with Q = 1,KS = 1, and not smooth. This is a very difficult construction and Freedman does it

using Casson handles.

Now we want to consider X4 smooth, up to diffeomorphism?

Definition 2. A smooth structure on a topological manifold X is a diffeomorphism equivalence

class of smooth manifolds homeomorphic to X.

Definition 3. If X is already given on a smooth manifold, we say a smooth structure is exotic if

it does not contain X, i.e. [X ′] where X is homeomorphic to X ′ but not diffeomorphic to X ′.

Example 6. For dimension ≤ 3: Every manifold has a unique smooth structure. (dimension 3

was proven by Moise in the 1950s)

Example 7. Rn has a unique smooth structure for n 6= 4.

Example 8. R4 has uncountably many smooth structures(!) (Donaldson, Gompf, Taubes, 1980s)

Example 9. If X4 is closed, it can have at most countably many smooth structures.

Remark 4. In dimension 4, smooth structures are the same as piecewise linear structures. (One

can just think about countably many finite simplicial complexes)

Every closed Xn for n 6= 4 has only finitely many smooth structures. There exist closed X4

with countably many smooth structures, e.g. CP 2#kCP 2, k ≥ 2 (Akhmedov-Park). It is unknown

if there exist exotic smooth structures on S4,CP 2#CP 2, S2 × S2.
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Open Question: Are there infinitely many smooth structures on every X4 closed and smooth?

Sn has a unique smooth structure fn, n = 1, 2, 3, 5, 6. S7 has 28 smooth structures (including

orientation). In principle one can count smooth structures on Sn, n 6= 4.

Conjecture 1. (4D Smooth Poincaré Conjecture) (SPC4) S4 has a unique smooth structure, i.e.

X ∼ S4 ⇒ X ∼= (diff)S4 (19)

Theorem 6. (4D Topological Poincaré Conjecture)

X ∼ S4 ⇒ X ' (homeo)S4 (20)

Potential counterexamples to SPC5 :

Example 10. P := balanced presentation of the trivial group

1 = 〈g1, ..., gm|r1, ..., rm〉 (21)

the number of generators is equal to the number of relations. From above XP is obtained from

#m(S1 × S3) by surgery along loops. Some exercises:

〈x, y|x4y3 = y2x2, x6y4 = y3x3〉 = 1 (22)

〈x, y|x4 = y5, xyx = yxy〉 = 1 (23)

Then π1(XP ) = 1, H1 = H3 = 0, H0 = H4 = Z. From the homework, χ(XP ) = 2 in this case,

which means that b2 = 0,⇒ Q = 0, and then Freedman proved that XP ' S4.

Example 11. (Gluck Twists) (From homework) Suppose we have a knotted embedding

Σ ↪→ S4 (24)
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Let Σ = S2 and V by a tubular neighborhood of Σ, i.e. ∼= S2 ×D2. Then

GΣ = (S4 − V ) ∪ϕ (S2 ×D2) (25)

ϕ : S2 × S1 → S2 → S1, (26)

ϕ(x, θ) = (rotθ(x), θ) (27)

From the homwork H2(GΣ) = 0, so therefore GΣ ' S4.

Classification of symmetric, unimodular bilinear forms over Z. Over R it’s easy, with rank and

signature. (there’s a chapter in Serre’s “A Course in Arithmetic”)

Q : Zr × Zr → Z over R (28)

Q ∼ Q′ = Q′ = AQAT (29)

with rank (r = b2(x) = b+2 (X) + b−2 (X)), signature (σ = σ(x) = b+2 (X)− b−2 (X)), and parity.

Case:

1. Q is indefinite and odd, then Q ∼= m(1)⊕ n(−1),m, n > 0 (diagonal)

2. Q is indefinite and even, then

Q ∼= m

0 1

1 0

⊕ nE8,m ≥ 0, n ∈ Z (30)

where E8 = 2I −A, where A is the adjacency matrix of the following Dynkin diagram:

· · · · · · ·

·

3. If Q is definite, then it’s complicated. E.g. m(1),m(−1);E8, E8 ⊕ E8, E16,...

Remark 5. Indefinite implies that Q is determined by r, σ, and parity.

This is not true for definite matrices. E.g.

E8 ⊕ 〈1〉 � 9〈1〉 (31)

where odd, rk.9, σ = 9.

9



Thus we can ask which Qs appear as QX for X4−closed and simply connected? Freedman proved

that all Q, if X is topological. If X is smooth, then what?

Theorem 7. (Rohlin 1952) X smooth, simply connected, Qx−even implies 16|σ(x). (From algebra

we know that 8|σ(x))

Corollary 3. (Freedman) There exists an “E8-manifold” Q = E8. This is topological, but not

smoothable. In fact it is not even triangulable. Q−even, KS = 0.

What about E8⊕E8? 16|σ, still not smoothable. This leads to the beginning of Gauge Theory:

Theorem 8. (Donaldson diagonalizability theorem, 1982) For X4 smooth, closed, simply con-

nected, then QX being definite implies QX is diagonalizable (over Z), i.e. ±m〈1〉.

The original proof used Yang-Mills theory. Newer proofs use Sieberg-Witten thoery or Heegaard

Floer homology.

For indefinite forms: for the odd case, m(1) ⊕ n(−1) realized by #mCP 2 ∗ #nCP 2. For the

even case,

n

0 1

1 0

⊕mE8 (32)

K3 surface (z4
0 + z4

1 + z4
2 + z4

3) = 0} ⊂ CP 3 (Fermat quartic). This is simply connected, and

QX = 3

0 1

1 0

⊕ 2(−E8) (33)

QY = 3

0 1

1 0

⊕ 2E8 (34)

Connected sums of ±K3s and (S2 × S2)s then one can realize

QX = n

0 1

1 0

⊕mE8 (35)

for |m| ≤ 2
3n

10



Conjecture 2. ( 11
8 conjecture) If X4 smooth, simply connected,

QX = n

0 1

1 0

⊕m(−E8) (36)

therefore |m| ≤ 2
3n, so b2 ≤

n
8 |σ|.

Using Seiberg-Witten theory and algebraic topology, we have the following theorem.

Theorem 9. We have b2 ≤ 10
8 |σ| is equivalent to |m| ≤ n.

Theorem 10. (Hopkins-Lin-Shi-Xu, 2019) If m = 2p ≥ 4, then n ≥ the following:

1. 2p+ 2, p = 1, 2, 5, 6 (mod 8)

2. 2p+ 3, p = 3, 4, 7 (mod 8)

3. 2p+ 4, p = 0 (mod 8)

In summary: A smooth 4-manifold that is closed and simply connected is determined up to

homeomorphism by σ, χ = 2 + b2 = 2 + b+2 + b−2 , and type (parity of QX). (χ is the Euler number,

with is 2 plus the Betti number)

In examples of 4-manifolds from algebraic geometry, we can calculate b±2 using characteristic

classes.

2 Characteristic Classes

We give a review of characteristic classes.

Definition 4. Chern Classes: Rank r complex vector bundle E → X, where X is a paracompact

space.

ck(E) ∈ H2k(X;Z) (37)

The geometric interpretation, if X is a manfiold: ck is Poincaré dual to the locus where r + 1− k

generic sections of E are linearly dependent.

Remark 6. (aside from the author) A generic section is a section s of a bundle E → M that

intersects the zero section transversely. Let Z(s) be the zero locus of s. Since s is transverse
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to the zero section, Z(s) is a submanifold of complex codimension r, the rank of E. This has a

fundamental class [Z(s)] ∈ Hn−2r(M). Taking the Poincaré dual of [Z(s)], we get a cohomology

class in H2r(M ;Z), which is the Euler class e(E), and is the rth Chern class, so we have

e(E) = cr(E) := PD([Z(s)]) ∈ H2r(M ;Z) (38)

For s1, ..., sr−i+1 generic sections, we get

ci(E) = PD([Z(s1, ..., sr−i+1)]) ∈ H2i(M ;Z) (39)

We define c0(E) = 1 and have the total Chern class of E given by c(E) := 1 + c1(E) + ... ∈

H∗(M ;Z).

Properties:

1. c0 = 1, ck = 0 for k > r

2. Functoriality: f : X → Y,E → Y , we have f∗ck(E) = ck(f∗E)

3. c = c0 + c1 + ... ∈ H∗(X;Z)⇒ c(E ⊕ F ) = c(E) ^ c(F )

4. X = CPn, E = TX, c(E) = (1 + ω)n+1, ω ∈ H2(CPn) = Z, where ω is the Poincaré dual of

[CPn−1]

5. c1(E) = c1(∧rE), where ∧rE is the determinant line bundle of E

6. L1, L2 - line bundles, then c1(L1 ⊗ L2) = c1(L1) + c1(L2)

7. ck(E∗) = (−1)kck(E)

Definition 5. Siefel-Whitney Classes: E → X rank r real vector bundle. Then wk(E) ∈

Hk(X;Z/2), with properties 1-3 as above, with analogy for RPn for 4. In addition,

1. If E−complex, then w2k−1 = 0, w2k = ck mod 2

2. w(E)
1 = 0 if and only if E is orientable

3. If w1(E) = 0, then w2(E) = 0 if and only if E is spinnable oriented:

E-real, oriented vector bundle of rank r, means that the principal SO(r)-bundle clutching function

Uα ∩ Uβ → SO(r). Spin(r)
2:1−−→ SO(r). π1(SO(r)) = Z/2 for r ≥ 3; in that case, spin(r) is the

universal cover of SO(r). A spin structure on E is a lift of E to a spin(r)-bundle.
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Definition 6. Pontryagin Classes: E-real vector bundle, then E ⊗R C = (E ⊗R C)∗ ⇒ c2k = 0

for k odd.

pk(E) = (−1)kc2k(E ⊗R C) ∈ H4k(X;Z) (40)

Definition 7. Euler Class: E → X a real vector bundle, of rank r, then

e(E) ∈ Hr(X;Z) = PD[zero set of a generic section of E when X is a manifold.] (41)

Properties:

1. wr = e mod 2

2. E−complex, e = cr/2 ∈ Hr(X;Z)

3. X oriented manifold, E = TX ⇒ e(TX)[X] = χ(X) is the Euler characteristic

For X4 a closed smooth simply connected manifold. Characteristic classes of TX are wi, pi, e, e ∈

H4(X;Z) = Z, χ = 2 + b2.

p1(TX) ∈ H4(X;Z) = Z (42)

p1(TX)[X] = 3σ(X) (43)

by the Hirzebruch signature theorem.

w1 = 0 for X oriented. w2 ∈ H2(X;Z2) = (H2(X;Z) mod 2).

Lemma 1. w2 is a characteristic element for QX , i.e. 〈w2, α〉 = 〈α, α〉 mod 2, ∀α ∈ H2(X;Z).

Proof. α = PD[Σ], Σ ↪→ X oriented. Then TX|Σ = TΣ ⊕ NΣ, TΣ, NΣ = oriented, (w1 = 0),

w(TΣ) = 1 + w2(TΣ), w(NΣ) = 1 + w2(NΣ). Then we have

w(TX)|Σ = (1 + w2(TΣ))(1 + w2(NΣ)) (44)

〈w2, α〉 = w2(TX)[Σ] = w2(TΣ)[Σ] + w2(NΣ)[Σ] (45)

= e(TΣ)[Σ] + e(NΣ)[Σ] (46)
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and e(TΣ)[Σ] = 2 − 2g = 0 mod 2. Thus this is equal, for Σ′ a small deformation of Σ, to

〈[Σ], [Σ′]〉 = 〈α, α〉 mod 2.

Corollary 4. QX is even if and only if 〈w2, α〉 mod 2, for all α, if and only TX-spin (X spin)

Corollary 5. If we know w2, e, p1, this determines the homeomorphism type of X.

From algebraic geometry, we consider the following 4-manifolds:

Zd = {(z0 : z1 : z2 : z3 :) ∈ CP 3|p(z0, z1, z2, z3) = 0} such that ∂P
∂zi

= P = 0,∀i has no nonzero

solutions. Then Zd is a smooth manifold. From the homework, the diffeomorphism type of Zd

depends only on d, not on P . Therefore we can take P = zd0 + zd1z
d
2 + zd3 .

1. d = 1: It’s a linear equation so CP 2 ⊂ CP 3

2. z2
0 + z2

1z
2
2 + z2

3 = 0. Let x = z0 + iz1, y = z0 − iz1. Then we have xy = uv, so Z2 is

diffeomorphic to CP 1 × CP 1 ∼= S2 × S2 via the map [x : y : u : v] 7→ ([x : u], [x : v])

3. d = 3. Homework. CP 2#6CP 2

4. d = 4 is a K3 surface.

5. d ≥ 5 surfaces of general type

Invariants of Zd. First of all π1(Zd) = 1 = π1(CP 3) using the Lefschetz hyperplane theorem. See

Milnor’s notes on Morse theory. CP 3 ↪→ CPN via Veronese embedding of degree d: Zd = CP 3∩

(a hyperplane). Let X = Zd. c(TX) =? For H → CP 3 a hyperplane line bundle c1(H) = h =

PD[CP 2] ∈ H2(CP 3) = Z. NX = H⊗d|X , c1(NX) = c1(H⊗d)|X = dη, for η = h|X ∈ H2(X). So

we do the same as above; decompose via

c(TCP 3|X) = c(TX)c(NX) = (1 + c1(TX) + c2(TX))(1 + dη) (47)

= (1 + η)4 = 1 + 4η + 6η2 (48)

after calculation = c1(TX) = (4− d)η, c2(TX) = (d2 − 4d+ 6)η2 (49)

Then we can calculate the Euler class:

χ(X) = e(TX)[X] = c2(TX)[X] = (d2 − 4d+ 6)(η2[X]) (50)

= d(d2 − 4d+ 6) (51)

because h[X] = d ∈ CP 3. (h[X] = 〈[X],[hyperplane]〉).

14



Further, we have b2 = χ− 2 = d3 − 4d2 + 6d− 2. Then

σ =
1

3
p1(TX)[X], p1 = −c2(TX ⊗ C) = −c2(TX ⊕ T ∗X) (52)

c(TX) = 1 + c1 + c2, c(T
∗C) = 1− c1 + c2 (53)

p1 = −2c2 + c21 (54)

This is true for all algebraic surfaces. In our case σ = d(4−d2)
3

Finally, for the parity, we have w2 = c1 mod 2. Therefore Q(X-spin) is even, so equivalently

w2 = 0, so equivalently d is even. Thus for example the K3 surface, c1 = 0 so it is a Calabi-Yau

surface, b2 = 22, σ = −16, d (our intersection form) is even, QX -even, indefinite, implying

n

0 1

1 0

⊕m(−E8) (55)

and therefore n = 3,m = 2.

For another algebraic family, consider a hyperplane bundle H → CP 2. Let s be a generic

section of H⊗2p, zero set Bp ⊂ CP 2, so a Riemann surface.

Rp = {ξ|ξ2 = s} ⊂ total space of H⊗p (56)

These are both bundles over CP 2 : Rp
2:1−−→ CP 2, which is 2-to-1 away from the zero set Bp. Thus Rp

is the double cover of CP 2 branched over Bp. We can calculate π1(Rp) = 1, b+2 = p2− 3p+ 3, b−2 =

2p2 − 3p+ 1;Rp−spin↔ p-odd. Then we have R1 = S2 × S2, R2 = CP 2#7CP 2, R3 = K3 surface,

Rp, p ≥ 4 is a surface of general type.

Enriques-Kodaira classification of algebraic surfaces: The Kodaira dimension: let K be

the canonical bundle, pn = dim(H0(K⊗n), n ≥ 1. K is the smallest k such that pn
nk

is bounded

(k = 0, 1, 2 in dim 4), or −∞ if all pn = 0. K = −∞: rational or ruled surfaces (CP 2,CP 1×CP 1).

For K = 0, we can have K3, T 4 (abelian surfaces), Enriques surfaces, hyperelliptic surfaces. For

K = 1, elliptic surfaces. For K = 2, surfaces of general type.

3 Handles & h-cobordism

Why is dimension 4 harder than dimension n, where n ≥ 5? Say Xn is a smooth, closed

n-manifold. Let f : X → R be a Morse function. Since it is morse, there are finitely many critical
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points (assume all critical values are different). p ∈ Crit(f) be a local model near p.

f(x1, ..., xn) = −x2
1 − ...− x2

k + x2
k+1 + ...+ x2

n + c (57)

Observe that f(p) = c, k = index(p). In Morse theory, passing from Y = X≤c−ε(= f−1(−∞, c−ε))

to X≤c+ε by adding a k-handle.

In adding handles: take a Yn, and an embedding ϕ : Sk−1 ↪→ ∂Y with trivial normal bundle.

We have a framing (identification vSk−1 ∼= Sk−1 × Rn−k).

Y ′ = Y ∪nbhd(ϕ(Sk−1)) (Dk ×Dn−k) (58)

∼= Y ∪Sk−1×Dn−k (Dk ×Dn−k) (59)

Y ′ is obtained from Y by attaching an n−dimensional k−handle. ∂Y ′ is obtained from ∂Y by

surgery along the attaching sphere, i.e. take out Sk−1 ×Dn−k, and glue in Dk × Sn−k−1.

From Morse theory, what we get is that every manifold has a decomposition into handles, a

handle decomposition, and these can be arranged without loss of generality in nondecreasing index.

Thus X = (X0|X1|...|Xn) where Xi is a union of i−handles. For example, the torus has indices

under the Morse height function 0, 1, 1, 2, so T 2 has the handle decomposition given by 2.

Remark 7. We can read H∗(X) from its handle decomposition (CW )−complex. The cores of

k-handles are k−cells, and Ck(X)−gride by k-handles (hkα)α∈A, ∂h
k
α =

∑
β〈hkα|h

k−1
β 〉hk−1

β , where

the bracket is the incidence number: the attaching sphere of (hkα) · (belt sphere of hk−1
β ).

Theorem 11. (Cerf) Every monotone (arranged in nondecreasing index) 2-handle decompositions

of X can be related by a sequence of

1. handleslides

2. creating/cancelling handle pairs. See Figure 4.

3. isotopies between levels (in Xi for some i)

Handleslides, taking the connected sum of a “push-off” of the attaching sphere i.e. identifying

another element of the normal bundle other than 0.

Creating/cancelling handle pairs: For a (k − 1)−handle hk−1 and a k-handle (hk) such

that the attaching sphere of hk is transverse to the belt sphere of hk−1 is 1 point. This is the

“geometric intersection number.”
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∪ 2-handle

Figure 2: Handle decomposition of T 2

Proof. (SKETCH) Handle decompositions come from Morse functions, so we want to relate two

Morse functions f0, f1 : M → R by a family ft. Generically, we use 2 types of singularities:

1. birth-death, corresponding to handle cancellation and creation.

2. There exists a trajectory of ∇f between two critical points of the same index correspond to

a handleslide.

For n ≥ 5, we have the following theorem:

Theorem 12. (h-cobordism Theorem, Smale, 1960s) Mn, Nn closed, simply connected, and ori-

ented. Wn+1 cobordism (∂W = (−M) ∪N) is simply connected. Inclusions of M ↪→ W,N ↪→ W

are homotopy equivalences. This is the definition of an h−cobordism. Then there exists a diffeo-

morphism W ∼= M × [0, 1]. In particular, M ∼= N .

Corollary 6. (High dimensional Poincaré Conjecture) n ≥ 6, Σn ∼ Sn (homotopy equivalent)

implies Σn ' Sn homeomorphic.
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core:
Dk × {0}

cocore:
{0} ×Dn−k

belt sphere:
∂cocore = {0} × Sn−k−1

Y
∂Y

Attaching sphere

Figure 3: Handle core, cocore, and belt sphere.

Proof. Σ′ is an h-cobordism from Sn−1 to Sn−1. Sn is an h-cobordism from Bn to Bn, with the

middle being Sn−1 × [0, 1]. Every homeomorphism of Sn−1 extends radially to Bn (NOT true for

diffeomorphisms).

Remark 8. The topolocial Poincaré Conjecture is true in all dimensions. The h-cobordism theorem

fails in dimension 4.

Proof. (PROOF SKETCH OF H-COBORDISM) Choose a morse function f : W → [0, 1], f−1(0) =

M,f−1(1) = N . We arrange the critical points in increasing order, and get a handle decomposition.

The goal is to eliminate all handles, so thatW ∼= M×[0, 1]. We can eliminate the 0-handles (balls).

W is in this lens a graph with vertices 0-handles and edges 1-handles. In removing 0-handles, we

take loops in the graph and create 1-handles. Notice that handles of complementary dimensions

are similar (Dk × Dn+1−k, f ↔ −f). Dually we can eliminate (n + 1)−handles. For Wj made

of j−handles, H∗(W,M) = 0, C∗(W,M) generated by handles; acycle, free ex. over Z. Up to
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→ →

Figure 4: Cancelling pairs of critical points (handles).

isomorphism, it decomposes into ⊕(Z id−→ Z) (hkα → hk−1
α ) generated by elementary basis changes

ei → ei ± ej (60)

ej → ej (61)

the above move corresponds to handleslides. 〈hkα|hk−1
β 〉 = 1 algebraically. We want to make the

geometric incidence number = 1, so we want to cancel (hkα, h
k−1
β ). P k−1∩Qn−k+1 inside Zn =level

set. [P ] · [Q] = 1; we want P ∩Q = 1 point. We want to cancel (+,−) pairs of intersections: see

Figure 5. The disc bounded by P and the (+,−) loop is a Whitney disk. If π1(Z) = 1 and 2+2<n,

if there exists an embedded Whitney disc, we can get rid of (+,−), and eventually we get P ∩Q =

1 point. If π1(Z) = 1, it is okay if there don’t exist 1-handles and n-handles. (these can be traded

bor 3-handles and (n− 2)-handles)

The problem in dimension four is that we can find immersed, but not recn. embedded Whitney

disks. Freedman proved that one can get rid of transverse double points in Whitney discs by

adding an “infinite tower of handles” (Casson handle).
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=

=

h1

h0

h1

h2

Figure 5: Cancellation of handles.

Theorem 13. (Topological h-cobordism theorem in dimension 4, Freedman, 1982) Same hypothe-

sis, M4, N4,W 5 implies that W 'M × [0, 1], M ' N . (homeomorphic)

Corollary 7. Topological 4d Poincaré Conjecture.

Theorem 14. (Wall) If M4, N4 are smooth, closed, and simply connected, QM ∼= QN implies that

M,N are h-cobordant.

Proof. σ(M) = σ(N) imply M,N are cobordant. There exists W 5, ∂W = (−M) ∪ N . Do some

surgeries on W to get an h-cobordism to get rid of H1(W,M)

Therefore Wall and Freedman’s h-cobordism implies that smooth, simply connected closed

4-manifolds are determined by QM up to homeomorphism.

Corollary 8. Topological 4d Poincaré Conjecture.

Remark 9. There exist examples of exotic smooth 4-manifolds M ' N,M � N,QM ∼= QN ⇒

M,N are h-cobordant. This just says that the smooth h-cobordism fails in
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4 Heegaard splitting & Kirby Diagrams

Recall that if we have a closed, connected, smooth manifold n-manifold, and a morse function

f : Xn → R, we can get a handle decomposition. We can assume there is only one min (0-handle)

and only one max (n-handle). This is because 0-handles are just balls, and we can homotope these

to points. k-handles behave similarly to (n− k)-handles: Dk ×Dn−k via the association f ↔ −f .

Handle decompositions in dimension 3: for X3, [0 − h|1 − h|2 − h|3 − h]. For the first two

sections [0 − h|1 − h|, we have a handlebody of genus g. This is given by the manifold Hg such

that ∂Hg = Σg, the surface with genus g. Hg is also given by the g−fold boundary connected sum

of \g(S1 ×D2), where we identify disks on their boundary.

Remark 10.

∂(X1\X2) = (∂X1)#(∂X2) (62)

Writing X = Hg ∪Σg H
′
g is a Heegaard splitting.

For handle decomposition in dimension 4, we get Kirby diagrams. For X4 = [0 − h|1 − h|2 −

h|3 − h|4 − h] = [X0|X1|X2|X3|X4]; X0
∼= X4

∼= B4. A 0-handle is given by B4, as well as a

4-handle. A 1-handle is given by D3 × [0, 1]/(D3 × {0} ∼ D3 × {1}) ∼= D3 × S1.

A 2-handle is given by X0 ∪ X1 = \k(S1 × D3) attached by ∂(X0 ∪ X1) = #k(S1 × S2).

In drawing the 1-handles, we draw a picture of the handle decomposition in 4-space in terms of

the attaching spheres. The 1-handle is going to be drawn in S3(R3) as some 2-spheres that are

identified (you have a handle joining them).

For 2-handles, we take the boundary of X0 ∪ X1 (which is #k(S1 × S2)) and add a 2-disc

attached along a 1-dimensional attaching sphere (and add a neighborhood of the 2-disc, as it is

a 2-handle). The attaching sphere can be any knot: for K ⊂ #k(S1 × S2). For more 2-handles,

we have an attaching link L ⊂ #k(S1 × S2). See Figure 6 where in this diagram we assume the

left spheres are identified with the right handles, so in this diagram we have 2 1-handles and a few

2-handles. We also need the link to be framed: ν(L) ∼= t(S1 ×D3). The twisting of the framing

of L can be thought of as a new link L′ being the boundary of ν(L). The framing of a link L ⊂ S3

is specified by an integer m ∈ Z on each component of L. m here is lk(L,L′) = [S] ◦ [L′], ∂S = L.

Then the attaching circles for 2-handles are curves in R3, and we can specify framings by integers,

as before.

So far we have our Kirby diagram as X0 ∪X1 ∪X2, specified by some link in R3 where some
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Figure 6: Attaching link.

components have integers and some dots (dotted components should be unlinks, in dotted notation)

[X0|X1|X2|X3|X4] (63)

S3,#k(S1 × S2),#l(S1 × S2), S3 (64)

for boundaries. We also need, after doing surgery on the link L,#k(S1 × S2), we get #l(S1 × S2)

for some l. If ∂(X0 ∪X1 ∪X2) = #l(S1 × S2), the attaching the 3-handles is automatic!

Theorem 15. (Laudenbach-Poenara) Every self-diffeomorphism of #l(S1×S2) extends to a self-

diffeomorphism of a boundary connected sum of (S1 ×D3).

Thus |X3∪X4] attaches to [X0∪X1∪X2| via ϕ along the boundary ∂ = #l(S1×S2). Then we

just write on the diagram “∪l 3-handles,” and sometimes “∪ 4-handles.” This gives a Kirby diagram

for X4. We also have Kirby diagrams for manifolds with boundary. For X4 with ∂X4 = Y 3, we

have X4 = [X0|X1|X2|X3|. If ∂X0 ∪X1 ∪X2) = M#(#l(S1 × S2)) we could attach l 3-handles.

Any framed link and some 1-handles specifies some X4, ∂X4 = Y with no 3-handles.

Remark 11. For D1, D2 Kirby diagrams, we write D1 ∼ D2 if the 4-manfiolds are diffeomorphic,

and D1 ∼∂ D2 if the boundaries are diffeomorphic.

22



Example 12. S4= 0-handle∪ 4-handle, or [0− h|1− h|2− h|4− h]→ [0− h|4− h], or [0− h|2−

h|3− h|4− h].

Example 13. (S1)1∪ a 4-handle is CP 2. For h : CP 2 → R a morse function, there are 3 critical

points of index 0,2,4. ∂CP 2 = L(1, 1) = S3.

Example 14. (S1)−1∪ a 4-handle is CP 2.

Example 15. For the hopf link with each circle labeled 0, this is S2 × S2. For a morse function

h : S2 → R is the height, we can project onto each factor f = h ◦ π1 + h ◦ π2 and get 4 critical

points, of index 0, 2, 2, 4.

Remark 12. H∗(X) can be read from the diagram Ck(X) is generated by k−handles. ∂(2-

handle) is
∑

(incidence number)*(1-handles), where the incidence number is how many times it

goes through Sks. This is counted by signs.

If we just have 2-handles, H2(X) is generated by 2-handles, i.e. link components L1, ..., Lk.

QX : Qij = lk(Li, L
′
j).

Example 16. For the Hopf link with 0 on each component,

QX =

0 1

1 0

 (65)

Example 17. K3 surface: QX = 2(−E8)⊕ 3Q where Q is

0 1

1 0

 (66)

b2 = 16 + 32 + 22. For an elliptic surface given by

E2 = K3. (1 on a number of strands (in the box in the diagram) means a positive full twist, and

a -1 is a twist the other way. n in the box is just n full twists)

Definition 8. A morse function f : M → R is called perfect if the number of critical points of f

is
∑
bi(M) i.e. ∂ = 0 is the Morse complex (with Q coefficients.
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-1-1

6n− 2

−nall -2

0

∪ a 4-handle

6n− 2

Figure 7: Kirby diagram for an elliptic surface.

Conjecture 3. X4 a simply connected, closed, smooth 4-manifold. Does every such X admit a

perfect morse function? I.e., does it have a handlebody decomposition with only 2-handles? (and

1 0-handle and 1 4-handle?) Ciprian suspects no.

Corollary 9. (Freedman’s Theorem) All unimodular symmetric bilinear forms Q appear as QX for

a closed simply connected topological 4-manifold, but not necessarily for a smooth one (Donaldson

diagonalizability).

They do, however, appear as QX , for a smooth 4-manifold with boundary: Q = Qij pick any

framed link := ∪L1 with lk(Li, L
′
j) = Qij . Then you get a Kirby diagram for X4 with only 2-

handles and QX = Q. Recall from the homework that this means that ∂X is an integral homology

sphere.

Example 18. For E8 the adjacency matrix for

· · · · · · ·

·

Corresponds to . Here X4 is called “E8 plumbing.” ∂X4 = P , the Poincaré homology sphere, with

representation the trefoil knot with label 1.
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Figure 8: Corresponding link.

5 Kirby Calculus

A surgery diagram for a 3-manifold Y is a Kirby diagram for X4 with only 2-handles, ∂X = Y .

Theorem 16. (Lickorish, Wallace) Every closed oriented 3-manifold admits a surgery diagram.

(Every 3-manifold is integral surgery on a link L ⊂ S3, i.e. it has a surgery diagram)

The proof depends on another theorem that we’re not going to prove, which is that every such

Y 3 appears as ∂X4, for X4 a closed, smooth 4-manifold. (Rokhlin)

Proof. Draw a Kirby diagram for X4. Replace 1-handles with 0-framed 2-handles. We can also

replace with 3-handles (turn it upside down).

Example 19. The zero set = S3. The unknot with an integer n is the lens space −L(n, 1).

Example 20. The trefoil knot with label 1 is -Poincaré sphere.

Example 21. The Borromean rings (3 linked rings such that the removal of one results in to

unlinks) with labels 0,0,0 is the 3-torus T 3.

The point of this is that both 3-manifolds and 4-manifolds can be expressed in terms of links.
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Remark 13. We can read the homology of Y H∗(Y ) from the surgery diagram. Recall we do this

is the Kirby diagram: the generators were the handles. For 3-manifolds, we have a framed link

as a surgery diagram, which also gives us a 4-manifold X with ∂X = Y , made of 2-handles, so

H1 = H3 = 0, and H2(X) is generated by 2-handles. Then we take the long exact sequence

...→ H2(X)→H2(X, ∂X)→ H1(Y )→ H1(X) (67)

...→ Zr Q−→Zr → H1(Y )→ 0 (68)

where Q is the linking matrix. Thus H1(Y ) is just the cokernel of the linking matrix Q. Thus

you know H2(Y ) = H1(Y ) which is the free part of H1(Y ), by the universal coefficient theorem

since H0(Y ) has no torsion. For example for the trefoil knot with framing 1 just has the matrix

〈1〉 which has no cokernel so the Poincaré sphere is a homology sphere.

The next question is in how many ways we can express them.

Theorem 17. (Cerf ’s Theorem) Any two handle decompositions of the same Xn are related by a

sequence of handelslides, handle cancellations/creations, and isotopies.

We apply this to Kirby diagrams for 4-manifolds:

Theorem 18. (Kirby) Any two Kirby diagrams for some X4 are related by a sequence of the

following Kirby moves:

1. Isotopies and Reidemeister moves on links; see Figure 9.

2. Handleslides of 1-handles; see Figure 10.

3. Handleslides of 2-handles; see Figures 11 and 12. (we follow the framing of the second knot)

The new framing for K1 is n1 + n2 ± 2lk(K1,K2).

4. Handle cancellations/creations. There are two kinds. They have to be between consecutive

handles. Therefore we consider them between 1-handles and 2-handles, and 2-handles and

3-handles. We want the incidence number to be geometrically 1. We thus need to have the

attaching sphere of the 2-handle intersect the belt sphere of the 1-handle at exactly one point.

Then we can kill the 1-handle and the 2-handle. For 2-handles and 3-handles, if we have an

unknot labeled 0 and a 3-handle, we can just delete them.
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↔

Type I Type II

Type III

Figure 9: Reidemeister moves.

Remark 14. The link without its frame twisting along the axis for something like the trefoil knot

is not always the 0-framing. lk(K,K ′) = writhe of the diagram. In the case of the trefoil knot

it’s -3.

So if the two knots are linked with each other, handlesliding one over the other picks up some

more linking numbers depending on how many times it links with said knot. There is also a sign,

depending on the orientation of the links.

Remark 15. We don’t need to show handleslides of 3-handles because we don’t have 3-handles.

Remark 16. In dotted notation, there is 1 more move (dotted notation is just instead of drawing

the spheres of the handle that we’ve identified, we draw a circle with a dot on it). Our move is

sliding a 2-handle under a 1-handle; see Figure 13.

Playing with these moves is called Kirby calculus.

Example 22. Given a Hopf link with one knot (circle) labeled 2 and the other 0, we do a handleslide

a 2-curve over the 0-curve in Figure 14. Under this move we’ve reversed orientation. Now we figure

out the framings. The linking number is lk(K1,K2) = 1
2 (−

∑
x +

∑
y), where x is the crossing
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Figure 10: A handleslide of 1-handles.

from the right over the other, and y is the opposite: left crosses over the right. Under this move,

the linking number of this result is 2+0±2. In this case, the orientation is reversed, so we subtract

2, resulting in 0. Then, after some Reidemeister moves, we get the same Hopf link but with each

circle labeled 0, which is just S2 × S2.

Example 23. Suppose we have the same Hopf link but with labels 0 and 1. Under the handleslides,

we get a linking number of 0+1-2=-1. After Reidemeister moves, we get 2 unlinked circles of

number -1 and 1. This result is CP 2#CP 2

In general, if one has a Hopf link with numbers 0 and p, the result is CP 2#CP 2 if p is odd,

and S2 × S2 if p is even. More generally, if one has numbers p and q, it’s not a closed 4-manifold.

If you look at the linking form, the linking form is

p 1

1 q

 (69)

, so the determinant of Q is pq− 1. This means generally that ∂X 6= S3, because we can compute

H2 via the cokernel of Q.
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Figure 11: A 2-handleslide producing a nontrivial link.

Theorem 19. Two surgery diagrams represent the same 3-manifolds if and only if they are related

by the following moves:

1. Reidemeister moves

2. Handleslides

3. Blow-up/blow-down: Having an unknot with ±1 is the same via ∂ as ∅. This is the same as

±CP 2.

Recall that a Heegaard diagram consists of a surface Σ of genus g, and some alpha curves

α1, ..., αg simple closed curves on Σ that span Zg ⊂ Z2g = H1(Σ,Z) and beta curves β1, ..., βg that

satisfy the exact same properties. This represents a 3-manifold

Y 3 = Σ ∪ (∪iD2
αi) ∪ (∪iD2

βi) ∪B
3
α ∪B2

β (70)

(discs with boundary the curve in the subscript)

Example 24. For the torus on the left in Figure ???, the red curve is the alpha curve and the blue

curve is the beta curve. This represents S3, because if we put the standard torus inside S3 and we
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0

0

Figure 12: A 2-handleslide.

fill in the disc in the red curve to get a solid torus and fill in the disc on the blue curve we get S3

back. For the torus of the right, the red and blue can be thought of as the same curve, so filling in

the discs and identifying the curves gives us S2, and the transverse side gives S1 × S2.

These diagrams give a Heegaard splitting:

#k(S1 × S3) = Y +
k,g ∪ Y

−
k,g (71)

a decomposition of #k(S1 × S3) into two handlebodies.

6 Trisections of 4-manifolds

(Gay, Kirby, 2012)

Definition 9. For X4 closed, smooth, connected, for 0 ≤ k ≤ g, a (g,k)-trisection of X is a

decomposition X = X1 ∪ X2 ∪ X3 such that, for all i ∈ {1, 2, 3}, there exists a diffeomorphism

ϕi : Xi → \k(S1 ×B3) such that ϕi(Xi ∩Xi+1) = Y −k,g, ϕi(Xi ∩Xi−1) = Y +
k,g.
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Figure 13: Sliding a 2-handle under a 1-handle.

A tristection diagram is like a Heegaard diagram. For a surface Σg and 3 sets of curves that

each span Zg ⊂ H1(Σ)

(α1, ..., αg)→ X1, (72)

(β1, ..., βg)→ X2, (73)

(γ1, ..., γg)→ X3 (74)

such that (α, β), (α, γ), (β, γ) are all Heegaard diagrams for #k(S1 × S2), and in fact they should

represent the splitting Y +
k,g ∪ Y

−
k,g.

Remark 17. From the homework we know that χ(X) = 2+g−3k. This means that k is determined

by g, and g is fixed mod 3 for a given X. Thus the terminology is often a “genus g trisection of

X.”

Example 25. For g = 0, k = 0. Our surface of genus zero is S2, and we have no curves on it.

Thus in the middle we have S2, the 3 boundaries are B3, and all Xi are B4. Thus ∂Xi = S3, the

two segments on the diagram. So ∂(X1 ∪X2) = S3, and adding B4 = X3 to S3 yields S4. See the
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02 20

+1 -1

Figure 14: Kirby calculus on a Hopf link, and contributions to the linking number.

top diagram in Figure 15.

Example 26. For Σg = T 2, so g = 1, and k = 1. Thus we have a torus with an alpha curve, a

beta curve, and a gamma curve. There is an S1 direction where nothing happens, so we have S1

crossed the previous example but with one dimension lower, i.e. each segment is B2, Xi = B3, and

the middle is S1. See the middle of Figure 15. Thus we have S1 × S3.

Example 27. For X = CP 2. We use the structure as a toric variety. Toric varieties come with

a moment map f : CP 2 → R2 which is a combination of two morse functions on CP 2:

f([z0 : z1 : z2]) = (
|z0|2∑
|zi|2

,
|z1|2∑
|zi|2

) (75)

The image of f is an isoceles triangle with coordinates (0,0), (1,0), and (0,1). The preimage of

a point on the long side is a circle, and the preimage of the point p in the middle is a torus. We

then divide the triangle into three parts Qi, with common boundary p. Let Xi = f−1(Qi). See the

lowest part of Figure 15.
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B4 S3
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B3 S3

S2

= S1 × S3

Figure 15: Trisection diagrams for S4, S1 × S3, and CP 2.
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Figure 16: Trisection diagram for S2 × S2.

Example 28. S2 × S2, we have g = k = 2. See Figure 16

Heegaard diagrams exist because one starts with a handlebody decomposition i.e. a morse

function on a 3-manifold, and similarly Kirby diagrams come from morse functions on a 4-manifold.

Theorem 20. (Gay, Kirby) Every closed, smooth, connected, oriented 4-manifold admits a trisec-

tion. (A trisection specificies an orientation. For example CP 2 one puts the diagonal in the other

direction)

Proof. (SKETCH) Choose a generic compact “Morse” 2-function f : X → B2. Local models: for

1. Generic points: f = submersion, one has (t, x, y, z)→ (t, x)

2. Folds: (t, x, y, z)→ (t,±x2 ± y2 ± z2)

3. Cusps: (t, x, y, z)→ (t, x3 − tx± y2 ± z2)

A morse 2-function is a family ft : X → R of ordinary functions, so the fold corresponds to curves

of critical points, cusps correspond to birth/death singularities. For example, we can have the

image of a manifold given by Figure 17 They play witih moves on the Cerf graphic They show

that one can arrange so that the cerf graphic looks like 18 f−1(0) = Σg. The trisection boundary

segment intersects the arcs of the Cerf diagram. With each intersection, the preimage is a surface

of of genus 1-less. Thus the preimage of the trisection boundary segment is a handlebody of genus

g. The preimages of the three parts give Xi in a trisection.

Theorem 21. (Gay, Kirby) Any two trisection diagrams of the same X4 are related by a sequence

of diffeomorphisms, α−handleslides, β−handleslides, γ−handleslides, and stabilizations, i.e. a

connected sum with a genus 3 surface representing S4 (Figure ???, a g = 3, k = 1)
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Figure 17: A cerf diagram of critical values.

Figure 18: Cerf diagram, rearranged. There are k arcs without cusps and g − k arcs with cusps.

S4 diagram
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In summation we can represent 4-manifolds with trisection diagrams or Kirby diagrams. At this

point in the class Ciprian said “Next we’re going to do the serious stuff,” referring to Seiberg-Witten

gauge theory.

7 Spin and Spinc structures

Motivation: Say we want to find a square root of the Laplacian ∆ = −
∑

( ∂
∂xi

)2 : C∞0 (Rn,Cm)→

C∞0 (Rn,Cm). This is a self-adjoint operator:

∫
Rn
〈∆ϕ,ψ〉 =

∫
Rn
〈ϕ,∆ψ〉 (76)

We want D =
∑
Ai

∂
∂xi

self-adjoint such that D2 = ∆:

∑
A2
i

∂2

∂x2
i

+
∑

(AiAj +AjAi)
∂2

∂xi∂xj
= ∆ (77)

⇒
∑

A2
i = −Id,

∑
(AiAj +AjAi) = 0, A∗i = −Ai (78)

Definition 10. The Clifford algebra is the real algebra generated by elements Ai such that

A2
i = −I, AiAj +AjAi = 0,∀i 6= j.

Thus we want a representation of the Clifford algebra.

Definition 11. Let H be a real n-dimensional inner product space. A Clifford module for H is

a Hermitian complex vector space V with a Clifford multiplication, i.e. a map γ : H → End(V )

such that

1. ||e|| = 1 implies γ(e)2 = −1

2. e1 ⊥ e2 implies γ(e1)γ(e2) + γ(e2)γ(e1) = 0

3. γ(e)∗ = −γ(e)

D is called the Dirac operator.

Remark 18. A Clifford module is a skew-Hermitian representation of the Clifford algebra.

Theorem 22. 1. If n = 2k, there is a unique finite-dimensional irreducible Clifford module

(S, γ) up to isomorphism with dimCS = 2k
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2. If n = 2k+1 there are exactly 2 such irreducible modules up to isomorphism (S, γ), (S,−γ), dimCS =

2k.

Example 29. In n = 3, H has a basis e1, e2, e3, S = C2.

γ(ei) = Bi, (79)

B1 =

1 0

0 −1

 , B2 =

0 i

i 0

 , B3 =

0 −1

1 0

 , (80)

These are the Pauli matrices. These satisfy B2
i = −1, they all anticommute. This gives modules

(S,±γ), the Clifford modules in dimension 3, and everything is isomorphic to them or a direct sum

of them.

Example 30. In n = 4, H has a basis e1, e2, e3, e4, S = C4 = S+ ⊕ S−, dimCS
± = 2.

γ(ei) =

 0 −B∗i

Bi 0

 , i = 1, 2, 3, 4, (81)

where B4 = Id.

Definition 12. A spinc stucture on an n-dimensional oriented Riemannian manifold X is a

Hermitian bundle S → X (complex bundle with hermitian metric) with a bundle map ρ : TX →

End(S) (linear map varying continuously) such that ∀x ∈ X, (Sx, ρx : TxX → End(Sx) is isomor-

phic to one of the irreducible Clifford modules for TxX.

So TX plays the role of the inner product (real) space, and the standard irreducible Clifford

module to be realized by this Hermitian bundle.

Example 31. In dimension 3, a spinc structure is a Hermitian bundle S → X of rank 2, ρ :

TX → End(S) such that there exists an orthonormal basis at each x for TxX and Hermitian

basis for S such that ρ(ei) = Bi. In other words, it’s a principal-U(2) bundle with a compatibility

condition with Tx.

Example 32. When n = 4, we have two Hermitian bundles S+, S− of rank 2, and with map

ρ : TX → Hom(S+, S−) such that there exists an orthonormal, Hermitian basis where ρ(ei) =

Bi, i = 1, 2, 3, 4.
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Remark 19. The category of Clifford modules is semisimple, so everything is a direct sum of

irreducibles.

Remark 20.

detBi = 1 : det(S+)
∼=−→ det(S−) (82)

∧2S+ → ∧2S− (83)

For the notation

TX Hom(S+, S−)

Hom(S, S)

γ

ρ

and det ρ(e) = 1,∀e, ||e|| = 1. L = ∧2S+ = ∧2S− is a complex line bundle determined by the

bundle associated to (S, γ).

We let the class of (S, γ) be c1(detL) = c1(S+) = c1(S−) ∈ H2(X;Z).

Remark 21. Warning: c1(S) = c1(S+ ⊕ S−) = 2c1(S±).

Remark 22. At some x ∈ X, Aut(Sx, γx) = ? (preserving the hermitian structure).

S+ S−

A+ A−

BiA
+ = A−Bi,∀i. If B4 = Id, we get A+ = A− = A ∈ U(2), ABiA−1 = Bi, A ∈ Z(U(2)) = S1 =

{eiθ · Id}

An alternate view of spin-c structures: Recall Spin(n)
2:1−−→ SO(n), with X Riemannian and

oriented. TX has an SO(n) structure group (i.e. Fr(TX) = principal SO(n)-bundle). Think of a

spin structure as a lift to a spin(n)-bundle.

Spinc(n) = Spin(n)×Z/2 U(1)− {(g, eiθ) ∈ Spin(n)× U(1)}/(g, eiθ) ∼ (τ(g),−eiθ) (84)

So we have a fibration U(1)→ Spinc(n)→ SO(n) = Spin(n)/(Z/2).

Example 33. For n = 3, Spin(2) = SU(2) = S(H) (the sphere in the quaternionic space). There

exists an h such that (x → hxh−1), x ∈ Span(i, j, k) ⊂ H (the imaginary parts). Spinc(3) =

SU(2)×Z/2 U(1) = U(2), because the U(1) part corresponds to the determinant of some A ∈ U(2)
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(can take det(A)
1
2 · I)), and then you multiply by det(A)

1
2 ·A) ∈ SU(2). det(A)

1
2 is only defined up

to ±1. (spinc structures on X3 are hermitian rank 2 vector bundles with compatibility with TX,

i.e. a U(2)-bundle with compatibility ρ : TX → End(S))

Example 34. In dimension 4, Spin(4) = SU(2) × SU(2) = S(H) × S(H), with the map x →

h1xh
−1
2 , x ∈ H.

Spinc(4) = (SU(2)× SU(2))×Z/2 U(1) ⊂ (SU(2)×Z/2 U(2))× (SU(2)×Z/2 U(1)) = U(2)× U(1)

(85)

= {(A,B) ∈ U(2)× U(2)|det(A) = det(B)} (86)

So Spinc(4) structures are hermitian rank 2 vector bundles S± with det(S±) = L with compatibility

with TX given by γ.

For X4 a smooth, simply connected, oriented, closed 4-manifold. Recall that X admits a spin

structure if and only if ω2(TX) = 0 if and only if QX is even.

Proposition 1. Any such X admits a spinc structure. The space of spinc structures on X is an

affine space modeled on H2(X,Z)., i.e. for s0, s1 ∈ Spinc(X), s0 − s1 is well-defined in H2(X,Z),

i.e. Spinc(X) ∼= H2(X;Z), but not canonically, with ?→ 0.

Proof. (For π1(X) = 0. For existence: say we have an atlas {Uα}α∈A such that on each Uα we

have a trivialization TX|Uα = R4 × Uα, where Sα = S|Uα is the standard clifford module. On

Uα ∩ Uβ we have

ϕαβ : Uαβ → Aut(S, γ) = S1 (87)

which is a map Sα → Sβ over Uαβ On Uα ∩ Uβ ∩ Uγ we have

ϕγαϕβγϕαβ : Uαβγ → S1 (88)

If we can arrange ϕγαϕβγϕαβ = 1 we would get a spinc structure on X. We run into a road-

block here, though. If we have a Cech 2-cocycle [ϕ] ∈ H2(X,C∞S1) (the structure sheaf), with
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C∞S1(U) = C∞(U, S1) with

0→ Z→ C∞R→ C∞S1 → 0 (89)

H2(X,C∞R)→ H2(X,C∞S1)→ H3(X;Z) (90)

0→ H2(X,C∞S1)→ 0 (91)

where the left zero is because C∞R has partitions of unity, and the right 0 is because 0 = H1(X;Z)

(via Poincaré duality) because π1(X) = 1. Thus [ϕ] = 0.

In classifying these: Suppose (S, γ), (S′, γ′) are two spinc structures. On Uα we get an isomor-

phism

ψα : (S, γ)|Uα → (S′, γ′)|Uβ , ψαψ
−1
β : Uαβ → Aut(S, γ) = S1 (92)

gives a 1-cocycle in H1(X,C∞S1). Then we have

0 ∼= H1(X;C∞R)→ H1(X,C∞S1)
∼=−→ H2(X;Z)→ H2(X,C∞R) ∼= 0 (93)

Remark 23. X4 admits a spinc structure, even if H1(X) 6= 0 (homework 3). In any dimension,

if the spinc structure on a manifold Xn exists, they are an affine space over H2(X;Z). There exist

6-manifolds without spinc structures.

Remark 24. For X4 we have a map c1 : Spinc(X) → H2(X;Z) with (S, γ) 7→ c1(S±) =

c1(det(S±)). For s ∈ Spinc(X), c1(E) = h ∈ H1(X;Z)l, we have

det(S± ⊗ E) = det(S±)⊗ E2 (94)

c1(S± ⊗ E) = c1(S±) + 2h (95)

If H2(X;Z) has no 2-torsion (e.g. if π1(X) = 1, then the spinc structure is determined by its

class, c1(s) = c1(S±); i.e. c1 : Spinc(X)→ H2(X;Z) is injective. In the homework, Image(c1) =
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{k ∈ H2(X;Z)|k mod 2 = w2(TX)}, i.e. 〈k, a〉 ≡ 〈a, a〉 mod 2,∀a.

Char(X) = 〈characteristic elements〉 (96)

If, for example,

1. X-spin, w2 = 0, then Spinc(X) ∼= Char(X) = 2H2(X;Z) ⊂ H2(X;Z)

2. X = CP 2, H2(X;Z) = Z, Char(X) = 2Z+ 1 ⊂ Z. (QX = 〈1〉)

If we have V an inner product space over R and an orientation, i.e. a trivialization of the

determinant; so if we have an orthonormal basis {ei} the volume for e1 ∧ ... ∧ en, n = dim(V ).

The Hodge star operator ∗ : ∧kV → ∧n−kV such that α ∧ ∗β = 〈α, β〉vol,∀α, β ∈ ∧kV . If

I ⊆ {1, 2, ..., n},

VI = ei1 ∧ ... ∧ eik (97)

is a basis for ∧kV . ∗VI = ±VĨ where Ĩ = {1, 2, ..., n} − I. For example, if k = 2, dim(V ) = 4.

dim(∧2V ) =
(

4
2

)
= 6, so

∗ : ∧2V → ∧2V, ∗2 = 1⇒ (98)

∧2V = ∧+V ⊕ ∧−V (99)

where ∧± are the ±1 eigenspaces of *. A basis for ∧+V is:

e1 ∧ e2 + e3 ∧ e4, (100)

e1 ∧ e3 − e2 ∧ e4, (101)

e1 ∧ e4 + e2 ∧ e3, (102)

For ∧−V is

e1 ∧ e2 − e3 ∧ e4, (103)

e1 ∧ e3 + e2 ∧ e4, (104)

e1 ∧ e4 − e2 ∧ e3, (105)

If X4 is a Riemannian manifold with an orientation, ∧2T ∗X = ∧+T ∗X ⊕ ∧−T ∗X. Hodge theory
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tells us that H2(X;R) = {harmonic 2-forms on X} = {ω ∈ Ω2(X)|dω = 0 = d∗ω} where d∗ =

−∗d∗. Thus * gives, for an automorphism on harmonic 2-forms gives H2(X,R) = H+⊕H− (H±1

are the eigenspaces of H) of dimension b2(X) = b+2 (X) + b−2 (X).

8 Seiberg-Witten Equations

With the Hodge star ∗ : Ωk(M) → Ωn−k(M) for M a closed, oriented, dimension n, Rieman-

nian manifold. With the exterior differential on forms d : Ωk(M) → Ωk+1(M) with De Rham

cohomology Hk(M ;R) = ker(d)/Im(d). If one has a Riemannian metric, one can define the

adjoint

d∗ = ± ∗ d∗ : Ωk−1(M)→ Ωk(M) (106)

Theorem 23. (Hodge Decomposition Theorem) We can decompose k-forms Ωk(M) as Im(d) ⊕

Hk(M)⊕Im(d∗) where the first two terms are the kernel of d and the last two terms are the kernel

of d∗.

Hk(M) = 〈harmonic k − forms〉 = 〈ω|(d+ d∗)ω = 0〉 = 〈ω|∆ω = 0〉 (107)

where ∆ = dd∗ + d∗d.

For X4 we have ∗ : Ω2 → Ω2, ∗2 = 1. We can decompose Ω2 as Ω2
+ ⊕ Ω2

− as the ± eigenspaces

of ∗, with projections

Π± : Ω2 → Ω2
±,Π

± =
1± ∗

2
,Π+ + Π− = id (108)

From the homework we have

Ω0 d−→ Ω1 d+−−→ Ω2
+ (109)

d+ = Π+ ◦ d (110)

In cohomology this is

H0 d−→ H1 d+−−→ H2
+ (111)
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where H2
+ is the +1 eigenspace of * acting on harmonic 2-forms H2(X).

Remark 25. dim(H2
+) = b+2 (X) with respect to the intersection form.

From the homework, if we have a 1-form α ∈ Ω1, d∗α = 0, d+α = 0, then α ∈ H2, so dα = 0,

so we know some part of the cohomology just from this half-complex.

Suppose X4 has some spinc structure (S, γ : TX → Hom(S, S)), and we know that

γ(ei) =

 0 −B∗i

Bi 0

 (112)

From our Riemannian metric we have that TX ∼= T ∗X through g. γ(ei) anticommute (it’s a

Clifford algebra), so γ extends to a map from the wedge product ∧kTX, and we can complexify it

to endomorphisms of S:

γ : ∧kTX ⊗ C→ End(S) (113)

with γ(ei1 ∧ ... ∧ eik) = γ(ei1)...γ(eik).

Lemma 2. Λ2
+ ⊂ ∧2TX acts trivially on S− and γ : Λ2

+ → su(S+) is an isomorphism. (a 1-form

takes S+ to S− and vise versa. A 2-form is a linear combination of wedges of 1-forms, so it takes

S± to S∓ and back to S±) su(S+) = 〈A ∈ End(S+)|A∗ = −A, tr(A) = 0〉. (su(2)’s fiber is

3-dimensional and thus so is the lie algebra and so is Λ2
+)

Proof. Check in a local orthonormal basis, e.g. e1 ∧ e2 + e3 ∧ e4 ∈ Λ2
+ acts on S− gives B1(−B∗2) +

B3(−B∗4) = 0. We can similarly check for the other elements and do the same for S+, and this

gives the basis for skew-hermitian matrices.

Corollary 10. For ω ∈ Ω2
+(X), this gives a section γ(ω) ∈ Γ(su(S))

In bundles, we want to be able to have connections.

Remark 26. “E-valued k-forms,” for a vector bundle E → X, for Ωk(X;E) = Γ(ΛkT ∗X ⊗ E)

(k-forms with values in E are given by sections in ΛkwT ∗X ⊗ E).

Definition 13. If X is a smooth manifold, E → X is a vector bundle, a connection A on E is

an operator ∇A : Γ(E) → Γ(T ∗X ⊗ E) = Ω1(X;E) (E-valued 1-forms) such that it satisfies the
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Leibniz rule

∇A(fs) = df ⊗ s+ f(∇As),∀f : X → R, s ∈ Γ(E) (114)

so this gives a way of differentiating sections of a bundle.

Remark 27. If A,B are connections, their difference doesn’t satisfy the Leibniz rule, because

(∇A −∇B)(fs) = f((∇A −∇B)s), so ∇A −∇B ∈ Γ(Hom(E, T ∗X ⊗ E)) = Γ(T ∗X ⊗ E ⊗ E∗) =

Ω1(X;End(E)). Thus one can think of the difference of two connections is a section on a bundle.

Thus the space of connections on E is a space, but there is no “0” connection, so it is an

affine space over Ω1(X,End(E)) (just like we described spinc connections as an affine space over

H2
+(X;E)).

Definition 14. Suppose E is a Hermitian complex vector bundle (complex vector bundle with a

Hermitian form). Then a connection A on E is called unitary if, in addition to the Leibniz rule,

if

d〈s, t〉 = 〈∇As, t〉+ 〈s,∇At〉,∀s, t ∈ Γ(E) (115)

If A,B are unitary, with ∇ = ∇A −∇B ,

〈∇S , t〉+ 〈s,∇t〉 = 0⇒ (116)

∇ ∈ Ω1(X;u(E) ⊂ End(E)) (117)

∇ is skew-Hermitian A = −A∗. Unitary connections on E are an affine space over Ω1(X;u(E)).

Definition 15. If X has a spinc structure (S, γ), a spinc connection ∇ = ∇A on S is a unitary

connection such that

∇A(γ(v)s) = γ(v)∇As+ γ(∇LCv)s,∀v ∈ Γ(TX)(vector fields), s ∈ Γ(S) (118)

(∇LC is the Levi-Civita connection) so γ is a way vector fields act on spinors. γ goes from TX to

endomorphisms on s. This gives us a new multiplication, known as “Clifford multiplication.”
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For A,B − spinc connections, ∇ = ∇A −∇B , ∇(γ(v)s) = γ(v)∇S.

∇S = ω ◦ s, ω ∈ Ω1(X;End(S, γ) ∪ u(E)) (119)

From before End(S, γ) = {A|ABi = BiA,∀i} = {z · I|z ∈ iR}. The space of spinc connections is

an affine space over Ω1(X; iR) = iΩ1(X;R).

Definition 16. The curvature of a connection A is

Ω0(X;E)dAΩ1(X;E)
dA−−→ Ω2(X;E) (120)

= Γ(E)
∇A−−→ Γ(T ∗X;E)→ Γ(Λ2T ∗X ⊗ E) (121)

FA = dA · dA ∈ Ω2(X;End(E)), FA(fs) = fFA(s)

We have the following properties:

1. c1(E) = [ 1
2π tr(FA)] ∈ Im(H2(X;Z)→ H2(X;Z)).

2. For A a connection on E, we get a trace connection Aτ on det(E). FAτ = tr(FA).

If one hasX4 with a spinc stucture, withA = spinc connection, then the curvature FA ∈ Ω2(X; iR),

with FA = 1
2FAτ , L = det(S+) = det(S−), Aτ =connections in L.

F+
A = Π+ ◦ FA ∈ Ω2

+(X; iR) ∼=γ Γ(su(S+)) (122)

If you have a spinor Φ ∈ Γ(S), you can get an element (ΦΦ∗)0 ∈ Γ(su(S+)), with A = ΦΦ∗ ∈

Γ(S ⊗ S∗) = Γ(End(S)). On can think of this as a map

A : Ψ→ Φ〈Φ,Ψ〉, A∗ = −A (123)

A0 = the trace-free part of A, i.e. A− 1
2 (tr(A))I. Let σ(Φ) = γ−1(iΦΦ∗)0 ∈ Ω2

+(X; iR).

F+
A = σ(Φ) ∈ Ω2

+(X; iR) is one of the Seiberg-Witten equations.

Definition 17. For (X4, g), with a (S, γ) = spinc structure, A = spinc connection,

DA := r(S)
∇A−−→ Γ(T ∗X ⊗ S)

g−→ r(TX ⊗ S)
γ−→ r(S) (124)
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DA is the Dirac operator, sometimes denoted /DA, /(∂A).

Remark 28.

DA =

 0 D−A

D+
A 0

 (125)

D+
A : r(S+)→ r(S−) (126)

Example 35. For a Euclidean space X = R4, g is the Euclidean metric, S+ = S− = C2 trivial.

Then

γ(ei) =

 0 −B∗i

Bi 0

 = Ai (127)

DA(S) =? Well, S is a section S : R4 → C2, take A to be the trivial connection. Then

s
∇A−−→ ds

g−→
∑

ei
∂s

∂xi
γ−→ (
∑

Ai
∂

∂xi
)s = DA(S) (128)

D2
A =

∑
i,j AiAj

∂
∂xi

∂
∂xj

= −
∑

∂2

∂x2
i

= ∆

On an arbitrary X, g(S, γ), A : we have the Weitzenböck formula

D2
AΦ = ∇∗A∇AΦ +

s

4
Φ +

1

2
γ(FA)Φ (129)

where ∇∗A∇A is the Laplacian for spinors, and the rest are curvature terms, s is the scalar curvator

of X, coming from the fact that the riemannian metric may be nontrivial.

8.1 The Equations

For (A,Φ), A = spinc connection and Φ is a positive spinor, i.e. an element of Γ(S+).

D+
AΦ = 0 (130)

F+
A = σ(Φ) (131)
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8.2 Results

Remark 29. These are gauge invariant; For a Gauge group G = Γ(Aut(S, γ)) = C∞(X,S1), if

we have u ∈ G : u · Φ ∈ Γ(S). For u ·A = A− u−1du.

u(∇A(u−1Φ)) = u(u−1∇AΦ + d(u−1)Φ) = ∇AΦ+ud(u−1)Φ (132)

=− u−1du (133)

with uu−1 = 1 ⇒ d(uu−1) = 0. With du ∈ Ω1(X; iR) (e.g. u = ef , f : X → iR, e.g. if π1X = 1,

all u : X → S1 are of this form), u−1du = df .

Remark 30. The gauge group is infinite-dimensional.

As an exercise: if SW (A,Φ) = 0, then SW (U · (A,Φ)) = 0. “The Seiberg-Witten equations are

gauge invariant.” by counting solutions to the SW equations gives SW invariants of the 4-manifold.

Definition 18. Let A0 be some fixed spinc connection. We say A is in the Coulomb gauge with

respect to A0 if d∗(A−A0) = 0.

Everything can be put in a Coulomb gauge by applying some u ∈ G:

Ω1 = Im(d)⊕H1 ⊕ Im(d∗) (134)

applying v ∈ G means that one can change A by df . Thus solutions to the SW equations modulo

gauge are going to be the same as SW equations in the Coulomb gauge modulo solutions that

don’t lift to R, i.e. H1(X;Z):

{sol.s to SW eq.s}/G = {sol.s to SW eq.s in Coulomb gauge}/H1(X;Z)× S1 (135)

where S1 represents constant gauge transformations.

In summation, we have, for X a closed, smooth, oriented manifold, with g a Riemannian

metric, and s ∈ Spinc(X). For simplicity, make the non-essential assumption that π1(X) = 1.

The Seiberg-Witten equations are, for a pair (A,Φ) of a spinc connection and Φ ∈ Γ(S+) is a

positive spinor,

D+
AΦ = 0 (136)

F+
A = γ−1((ΦΦ∗)0) (137)
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Definition 19. LetMSW be the moduli space {(A,Φ)satisfying SW}/G = {(A,Φ) satisfying SW eqs., d∗(A−

A0) = 0}/S1, where S1 are the constant gauge transformations.

What makes the SW equations special?

Theorem 24. MSW is compact. (in the C∞ topology)

Proof. Suppose we have a solution (A,Φ). The Weitzenböck formula is

D2
AΦ = ∇∗A∇AΦ +

s

4
Φ +

1

2
γ(FA)Φ (138)

There is a Hermitian metric on S, so we can take the Hermitian inner product:

∇〈Φ,Φ〉 = 〈∇AΦ,Φ〉+ 〈Φ,∇AΦ〉 = 2Re(〈∇AΦ,Φ〉) (139)

because this is a spinc connection (it satifies the Leibniz rule) and we have a Hermitian inner

product. This is then equal to

1

2
∆|Φ|2 =

1

2
d∗d|Φ|2 = d∗(Re〈∇AΦ,Φ〉 (140)

= − ∗ d ∗Re〈∇AΦ,Φ〉 = Re(〈∇∗A∇AΦ,Φ〉 − 〈∇AΦ,∇AΦ〉) ≤〉∇∗A∇AΦ,Φ (141)

= 〈D2
AΦ,Φ〉 − s

4
〈Φ,Φ〉 − 〈γ(FA)Φ,Φ〉 (142)

= −s
4
〈Φ,Φ〉 − 〈γ(FA)Φ,Φ〉 (143)

(〈∇∗A∇AΦ,Φ〉−〈∇AΦ,∇AΦ〉 is not 0, because it’s a pointwise equality. We do have 〈∇∗A∇AΦ,Φ〉L2 =

〈∇AΦ,∇AΦ〉L2) D2
AΦ = 0, and recall that Ω2

− acts trivially on S+, so γ(F+
A )Φ = (ΦΦ∗)0Φ. Then

we have

= −s
4
|Φ|2 − 1

2
〈(ΦΦ∗)0Φ,Φ〉 (144)
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In a unitary basis at some x ∈ X,Φ =

t
0

 , t = |Φ|, and

ΦΦ∗ =

|t|2 0

0 0

 , (145)

(ΦΦ∗)0 =
1

2

|t|2 0

0 −|t|2

 (146)

⇒ 〈(ΦΦ∗)0Φ,Φ〉 =
1

2
|Φ|4 (147)

Thus we get

1

2
∆|Φ|2 ≤ −s

4
|Φ|2 − 1

2
|Φ|4 (148)

Since X is compact, there exists some point x ∈ X such that |Φ| is maximal. 0 ≤ ∆|Φ|2 ⇒ Φ = 0

or |Φ|2 ≤ − s2 (in particular, if s ≥ 0, then |Φ| = 0). This is a pointwise bound on Φ, so we can

integrate to get Lp bounds on Φ. We also know that F+
A = γ−1((ΦΦ∗)0) means we can get bounds

on F+
A ; recall that we can always write A = A0 + ia, a ∈ Ω1(X;R). Then the curvature changes

by applyind d+ to this a: F+
A = F+

A0
+ id+a. Now we have a bound on d+a. We also know, via

the Coulomb condition, d∗a = 0. We have the maps

Ω0 d−→ Ω1 d+−−→ Ω+
2 (149)

so 0 = H1(X,R) = {a|d+a = 0, d∗a = 0} = ker(d+)/Im(d). Then

d∗ + d+ : Ω1 → Ω+
2 ⊕ (Ω0/R) (150)

is injective, Fredholm (linear elliptic operator), and a bound on (d+ + d∗)a gives a bound on a

via an elliptic estimate in some Sobolev norm. From elliptic bootstrapping we get C∞ bounds on

both a,Φ. This tells us thatMSW is compact.

There are two types of solutions to the SW equations: reducible (Φ = 0) and irreducible
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(Φ 6= 0). We can think of them in terms of the action of S1:eiθ ∈ S1 · (Λ,Φ) → (A, eiθΦ). For

irreducible solutions the S1−action is free.

Reducible solutions Φ = 0, DAΦ = 0, F+
A = 0, F+

A0
+d+a = 0. Then d+a = −F+

A0
, d∗a = 0. But

we know that d+ + d∗ is injective, so there exists 0 or 1 reducible solutions.

Our goal now is to count irreducible solutions. It would be nice ifMSW is a manifold.

Definition 20.

˜SW : Conn⊕ Γ(S+)→ Ω2
+(X; iR)⊕ Γ(S−)⊕ (Ω0(X)/R) (151)

(A,Φ)→ (F+
A − γ(ΦΦ∗)0, D

+
AΦ, d∗(A−A0)) (152)

where Ω0(X)/R = Im(d∗). The above map is the Seiberg-Witten map.

ThenMSW = ˜SW
−1

(0)/S1 is a manifold by transversality, if the Seiberg-Witten map is indeed

transverse.

d ˜SW (A,Φ) = (d+ + 〈Φ, ·〉, D+
A0
, ..., d∗) (153)

Together these form a linear elliptic operator, which is Fredholm between suitable spaces. index(d ˜SW ) =

dim(ker)− dim(coker) ∈ Z, which is invariant under deformation. From the Atiyah-Singer in-

dex theorem, we have

index(d ˜SW ) =
c1(s)2 − σ(x)

4
− b+2 (X) + b1(X) (154)

Definition 21. The Perturbed SW eq.s are

˜SW (A,Φ) = (η, 0, 0), η ∈ Ω2
+(X; iR) (155)

˜SW
−1

(η, 0, 0) is still compact.

Theorem 25. (Transversality theorem, Sard’s theorem in infinite dimensions) For a generic η,

˜SW
−1

(η, 0, 0) is a smooth manifold, of dimension index(d ˜SW ). So if this map is surjective, then

it’s a regular value, and the dimension of the cokernel is 0, and the dimension of the manifold is

the dimension of the kernel of d ˜SW , which is the index. The Transversality theorem tells you that

it suffices to consider these kinds of perturbations.
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This follows from the generalization of Sard’s theorem to infinite dimensions.

We still have a problem. Even ifMSW is a manifold, we want to divide by S1, and normally if

the action is free, we can divide and still get a manifold. But this action is not quite free because

we have those pesky reducibles. How many reducibles are there to these perturbed SW equations?

˜SW (A,Φ)|Φ=0 = (η, 0, 0) (156)

gives us F+
A = η, and F+

A0
+ d+a = η. d∗a = 0, d+a = η − F+

A0
.

Ω0 → Ω1 d+−−→ Ω2
+ (157)

with cohomology H0, H1, H2
+. “Reducibles exist if and only if η−F+

A0
∈ Im(d+)” is a codimension

b2+(X) condition. If b2+(X) is zero, then we’re in trouble, because we’ll always get reducibles.

The conclusion is then: If b2+(X) > 0, for generic η there are no reducibles. Then MSW,η =

MSW (X, s, g, η) = ˜SW
−1

(η, 0, 0)/S1 is a smooth compact manifold of dimension

d :=
c1(S)2 − σ

4
− b+2 + b1 − 1 (158)

Recall σ = b+2 − b
−
2 , χ = 2− 2b1 + b+2 + b−2 , so

d =
c1(S)2 − (3σ + 2χ)

4
(159)

so we have a very nice space of solutions. We would like to count the solutions, so we would like this

manifold to be 0-dimensional. If d = 0, SW, η = 〈fin. many points〉, and SWX(s, g, η) = #SW, η,

where the # is counting with signs; to fix orientations, we need to choose a homology orientation

on X, i.e. orient H0(X)⊕H1(X)⊕H2
+(X).

Remark 31. SWX(s, g, η) = #SW, η are called the Seiberg-Witten invariants, which can also

be defined when d > 0 (we need d to be even), but in all known examples, SWX = 0 for d > 0.

Definition 22. X is called of simple type if SWX(S) = 0∀s with d > 0.

Conjecture 4. (Witten) All X4 are of simply type. This is known to be true for symplectic 4-

manifolds (e.g. this contains all complex projective surfaces: CP 2, S2 × S2,K3, ... all are surfaces

in projective space, and we can pull back the Fubini-Study form on CPn and get a symplectic form

on the manifold).

51



Theorem 26. If b2+(X) ≥ 2, then SWX(S, g, η) is independent of generic (g, η). We need this

condition; before we assumed it was at least 1 so there were no reducibles. Now we assume that it

is at least 2 and get the proof:

Proof. (g0, η0), then (g1, η1) ∈Met× Ω2
+. Interpolate by a family (gt, ηt), and look at the moduli

space of solutions in this family: ∪t∈[0,1]MSW , (gt, ηt) is a smooth manifold of dimension d+1 = 1.

And we can arrange that it’s smooth and compact, but we need to avoid reducibles in a 1-parameter

family; the codimension b2+ condition implies that we need b2+ > 1, implying that we have a 1-

manifold with boundary (−MSW (g0, η0)) ∪ (MSW (g1, η1))

Remark 32. Our notation states SWX(S), s ∈ spinc(X). We assume that b+2 ≥ 2, d = 0.

Remark 33. When b+2 = 1, there exists a wall of perturbations where reducibles exist. There are

2 chambers of perturbations. We have invariants SW+
X (S), SW−X (S), SW+

X − SW
−
X = ±1.

Recall that the space of spinc(S) is an affine space over H2(X;Z). When π1(X) = 1, we have

a map

c1 : Spinc(X)→ H2(X;Z) (160)

that is injective.

Spinc(X) ∼= {k ∈ H2(X;Z)|〈k, a〉 ≡ 〈a, a〉 mod 2,∀a} = Char(x) (161)

Then we can define the Seiberg-Witten invariants of X as

SWX : Char(X)→ Z (162)

where SWX(k) = SWX(S), k = c1(S).

Definition 23. K is called a basic class if SWX(k) 6= 0.

9 Properties of Seiberg-Witten Invariants

SWX : Char(X) ⊂ H2(X;Z)→ Z

1. There are only finitely many basic classes. (a stronger version of compactness), i.e. SWX(s) =

0 for all but finitely many s.
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2. If X admits a metric of positive scalar curvature, then the Seiberg-Witten invariant is 0, due

to the Weitzenböck formula; because s ≥ 0, Φ = 0 so there are no irreducibles.

3. SWX(−s) = (−1)b
+
2 (X)−b1(X)+1SWX(s)

4. If X = X1#X2, b
+
2 (Xi) ≥ 2, then SWX = 0

5. If X is of simple type (Seiberg-Witten invariants are nonzero only when the expected di-

mension is zero) with basic classes Ki, i = 1, ..., s, then X ′ = X#CP 2 has basic classes

{Ki ± E|i = 1, ..., s}, E ∈ H2(CP 2;Z) is a generator, and SWX′(Ki ± E) = ±SWX(Ki).

(called the blow-up formula)

6. IfX is a complex projective surface, then SWX(±c1(TX)) = ±1 (sign doesn’t matter because

of symmetry)

7. (Taubes) If X is symplectic, then we can choose an almost-complex structure J combatibly

with the symplectic structure, and (TX, J) is contractible, and furthermore SWX(±c1(TX, J)) =

±1. (This generalizes (6): X ↪→ CPn, ωFS = i∗ω is a symplectic form on X) (Pullback of

the Fubini-Study form)

8. Adjunction Inequality: If Σ ⊂ X is an embedded, oriented closed surface, [Σ]2 ≥ 0, [Σ] 6=

0, then there exists K-basic class (SW invariant is nonzero) on X, 2g(Σ)−2 ≥ [Σ]2 + |K · [Σ]|.

Furthermore, if X is of simple type and g(Σ) 6= 0, the inequality is also true if [Σ]2 < 0, so

basically it’s almost always true.

We have some “fun” applications: existence of exotic smooth structures in dimension 4.

Example 36. X1 = K#CP 2, X2 = #3CP 2#20CP 2. Both are simply connected. What are

their intersection forms? 2(−E8) ⊕ 3σx ⊕ 〈−1〉, and 3〈1〉 ⊕ 20〈−1〉. They are both odd (and

therefore non-spin), indefinite, so it is determined by σ, χ (in fact diagonal). Thus by Freedman

X1 is homeomorphic to X2. What about diffeomorphic? SWK3(0) = ±1 because it’s a complex

projective surface (property 6). K3 is Calabi-Yau, so c1(TK3) = 0 (Recall that Zd ⊂ CP 3 gives

c1 = (4− d)h, Z4 = K3). Then we apply the Blow-up formula (property 5) to get SWX1
(E) = ±1.

However, SWX2
= 0, because of property 2: X2 has positive scalar curvature. By a theorem of

Schoen and Yau, if M1,M2 are manifolds of dimension ≥ 3 and admit positive scalar curvature,

then so does the connected sum. We apply this to the Fubini-Study metric on CP 2,CP 2. This

implies SWX2
= 0. Or we can use property 4: X2 = (2CP 2)#(CP 2#20CP 2). Each side has

b+2 ≥ 1, and therefore SWX2 is 0. Notice we couldn’t have done this with X1, because it doesn’t

split into two parts of b+2 ≥ 1. Therefore SWX1
6= SWX2

⇒ X1, X2 are not diffeomorphic.
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Example 37. X1 = Z5 ⊂ CP 3 vs. X2 = 9CP 2#44CP 2. We can compute that QX1
= 9〈1〉 ⊕

44〈−1〉 = QX2 , so X1, X2 are homeomorphic. Then we apply property 6: SWX1 6= 0, and then

through either 2 or 4 SWX2
= 0, so X1, X2 are not homeomorphic.

There are other applications.

Theorem 27. If X4 is closed and symplectic, then there is no decomposition X = X1#X2 with

b+2 (Xi) > 0, i = 1, 2.

Theorem 28. There exist (simply connected) almost complex 4-manifolds that are not symplec-

tic. An easy example for non-simply connected manifolds is S1 × S3. There H2 = 0, whereas a

symplectic form must have a nontrivial 2nd homology class.

Recall the definition of an almost-complex structure.

Definition 24. J ∈ End(TX) with J2 = −Id, and (TX, J) is a complex bundle.

From the homework we know that X4 has an almost complex structure (with π1(X4) = 1) if

and only if b+2 (X) is odd. We proved this using characteristic classes.

Example 38. X = #3CP 2, b+2 = 3 gives us that X is almost complex. X = CP 2#2CP 2 (or using

positive scalar curvature), so SWX = 0 gives us that X is not symplectic.

Proof. (SKETCH OF PROPERTY 3) Symmetry: for a spinc structure (S, γ : TX → End(S) =

S⊗S∗ = End(S∗)) which gives a conjugate spinc structure (S∗, γ). Since this is a complex bundle

we have S∗ ∼= S using the Hermitian metric. We have

c1(S+) = −c1(S+) (163)

via properties of chern classes. Then we have a one-to-one correspondence of solutions of SW

equations for (S, γ) with solutions of SW equations for (S∗, γ).

Proof. (SKETCH OF PROPERTY 4) Connected sums: X = X1#X2. We stretch the metric when
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we add a cylinder S3 × [−T, T ], T →∞ (called “neck stretching”). In the limit,

M̃SW (X) ∼= M̃SW (X1)× M̃SW (X2), (164)

M̃SW (X) = {(A, φ)| satisfy SW, d∗(A−A0) = 0} (165)

MSW (X) = M̃SW (X)/S1 (166)

If we want to think of MSW (X) itself, it is an S1-bundle over MSW (X1) ×MSW (X2). So the

solution on X is a tripli (solution on X1, solution on X2, and a gluing parameter in S1. Recall

that the expected dimension ofMSW (X), i.e. d(X, s), is c1(S)2−σ
4 − (b−

b1+1)
2 . and what we have is

d(X, s) = d(x1, s1) + d(x2, s2) + 1 = 0 (167)

⇒ one of d(Xi, si) must be < 0 (168)

Therefore there are no irreducible solutions for such (Xi, si), so SWX = 0.

Proof. (SKETCH OF PROPERTY 5) Blow-up Formula b+2 (CP 2) = 0 means that reducible solu-

tions exist generically. We get exactly one reducible solution on (CP 2,±E) even though d(CP 2,±E) =

−1 (because we divided by S1, the action of S1 is trivial on a point), and we can pair it with irre-

ducibles on some random (X, s), and get irreducibles on (X#CP 2, s± E).

Proof. (SKETCH OF PROPERTY 6) We can interpret solutions to SW equations on a complex

surface as divisors (complex curves) s = c1(TX)⇒ empty curve, given SWX = ±1.

Proof. (SKETCH OF PROPERTY 7) On symplectic manifolds, via Taubes, SW are Gromov-

Witten invariants; SW equations count J-holomorphic curves.

Proof. (SKETCH OF FIRST PART OF PROPERTY 8) Adjunction inequality, part a): For Σ ↪→

X, [Σ]2 ≥ 0, [Σ] 6= 0, SWX(k) 6= 0⇒ 2g(Σ)− 2 ≥ [Σ]2 + |k · [Σ]|. It suffices to prove k · [Σ] + [Σ]2 ≤

2g(Σ) − 2 because we can replace k by −k using symmetry. It also suffices to prove it assuming

[Σ]2 = 0, because we can reduce to this case using the blow-up formula:

X̃ = X#CP 2Σ̃ = Σ#CP 1 ⊂ CP 2 (169)
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so we get a surface of the same genus. We get K-basic if and only if K − E is basic. [Ẽ]2 =

[Σ]2 + [CP 1]2 = [Σ]2 − 1. If adjunction is true in X̃, then

2g(Σ̃)− 2 ≥ [Σ̃]2 − 1 +K · [Σ]− E · [CP 1] (170)

⇒ 2g(Σ)− 2 ≥ K · [Σ] (171)

So we blow up until we get the self-intersection point is equal to 0, and apply adjunction there.

We claim that [Σ]2 = 0⇒ K · [Σ] ≤ 2g(Σ)− 2. Well, if [Σ]2 = 0, then we have a neighborhood of

Σ isomorphic to Σ×D2 ⊂ X.

*We know that SWX(K) 6= 0, soMSW (X,S, g) 6= 0,∀ metrics g on X (for any metric on X,

because nonzero is an open condition). Otherwise we can choose (gt, ηt) given by generic metrics

and perturbations, giving us (g, 0);MSW (X, s, gt, ηt) 6= 0, there exists a solution for (gt, ηt). Take

the limit as t→ 0 to get a solution for (g, 0) (use compactness in families).*

So there exists a solution (A,Φ) so SW equations on X, metric g, η = 0. Then we take a

neighborhood of our surface Σ×D2. Then we insert a cylinder (stretch the neck) [0, R]× S1 × Σ

meeting the rest of the manifold X − (Σ ×D2). This gives us a Riemannian metric gR, which is

the product metric on the cylinder [0, R]× S1 ×Σ. On sigma we’ll make the metric with constant

curvature such that volume(Σ) is equal to 1.

We prove the Adjunction Inequality:

Proof. We reduced to the case [Σ]2 = 0. We want to show that 2g(Σ)− 2 ≥ K · [Σ]. [Σ]2 = means

that we have a tubular neighborhood of the form D2 × Σ. Then we take X as [D2 × Σ|[0, R] ×

Σ×S1− (D2×Σ)]. This gives a metric gR. On the cylinder it is the product metric, and on Σ we

have constant curvature (can talk about Gaussian curvature or scalar curvature), and volume =

1. We use the fact that K is a basic class, i.e. the SW equations have solutions for any metric and

any perturbation. For this metric and no perturbation, there exists an irreducible solution (A, φ)

to the SW equations. From the proof of compactness, we got that |φ|2 ≤ − s2 , where s is the scalar
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curvature. One of the quations is F+
A = γ−1((φφ∗)0); at a point, Φ =

t
0

 , t = |φ| gives us

(φφ∗)0 =
1

2

t2 0

0 −t2

 (172)

so |(φφ∗)0| = 1
4 t

4 ≤ 1
4 ( s2 )2 = s2

16 and thus |F+
A |2 ≤

s2

8 .

|F+
A |

2 ≤ s2

8
⇒
∫
x

|F+
A |

2dvol ≤ 1

8

∫
s2dvol (173)

From Chern-Weil theory, c1(S+) = [ i2πFA]

Lemma 3. For α ∈ Ω2(X4) closed, then [α]2 = ||α+||2L2 − ||−||2L2 , α± =( α) ∈ Ω2
±.

Proof.

[]2 =

∫
x

α ∧ α =

∫
(α+ + α−) ∧ (α+ + α−) (174)

=

∫
α+ ∧ α+ +

∫
α− ∧ α− + 2

∫
α− ∧ α+ (175)

Since
∫
α+ ∧ α− = −

∫
α+ ∧ ∗α− = 〈α+, α−〉 = 0, we get

=

∫
α+ ∧ ∗α+ −

∫
α− ∧ ∗α− + 0 (176)

= 〈α+, α+〉L2 − 〈α−, α−〉L2 (177)

We apply this to i
2πFA:

4π2c1(S+)2 =

∫
|F+
A |

2dvol −
∫
|F−A |

2dvol (178)
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Since

∫
x

|FA|2dvol =

∫
|F+
A |

2dvol +

∫
|F−A |

2dvol (179)

= 2

∫
|F+
A |

2dvol − 4π2c1(S+)2 (180)

≤ (
1

4

∫
s2dvol) + const (181)

1
4

∫
s2dvol is some constant, i.e. independent of R. Then we can say

1

4

∫
s2dvol = const+R

1

4

∫
Σ

s2
Σ (182)

The Gauss-Bonnet formula gives

∫
Σ

K = 2π(2g − 2)⇒ (183)

K = 2π(2g − 2) (184)

(since the volume of Σ is 1). Thus we have s
Σ = 2 ∗ 2π(2g − 2). Then our two facts

∫
X

|FA|2dvol ≤ (
1

4

∫
s2dvol) + const,

1

4

∫
s2dvol = const+R(2π(2g − 2))2 (185)

give us

∫
X

|FA|2dvol ≤ const+ r(2π(2g − 2))2 (186)

This integral is ≥ the integral on the cylinder,

∫
S1×Σ×[0,R]

|FA|2dvol ≤
∫
X

|FA|2dvol (187)

which is just ≥ R(
∫

Σ
FA)2 via Cauchy-Schwartz. Apply Chern-Weil to the surface, and we get

R(2π〈c1(S+), [Σ]〉)2 (188)
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Divide by R and take R→∞, we get

2π〈c1(S+),Σ〉 ≤ 2π(2g − 2)⇒ 〈c1(S+),Σ〉 ≤ 2g · 2. (189)

Remark 34. This can be extended to [Σ]2 < 0, assuming X is of simple type.

Theorem 29. (Adjunction Formula) Suppose X4 has an almost complex structure J . Suppose we

have a Σ ⊂ X that is J−holomorphic, i.e. J∗(TΣ) = TΣ. Then

2g(Σ)− 2 = [Σ]2 − c1(TX, J)[Σ] (190)

Proof. TX|Σ = TΣ⊕ νΣ. So

c1(TX)[Σ] = c1(TΣ) + c1(νΣ)[Σ] = χ(E) + [Σ]2 (191)

since c1(TΣ), χ(Σ) = 2− 2g(Σ).

This applies to Σ a complex curve ⊂ X, a complex projective surface, or Σ is a J-holomorphic

curve ⊂ X a symplectic 4-manifold.

Theorem 30. (Symplectic Thom Conjecture, proved by Ozsváth-Szabó, 1998) For X4 symplectic,

and Σ ⊂ X is symplectic (i.e. ω|Σ is a volume form). Then Σ is genus minimizing in its homology

class.

Proof. If Σ = S2, there’s nothing to prove. Note that [ω]2 = [ω ∧ ω] > 0 ⇒ b+2 (X) > 0. Assume

b+2 (X) ≥ 2, so the SW invariants are well-defined. It is a theorem that X-symplectic implies that X

is of simple type, so we can apply adjunction. From Taubes, if X is symplectic, then K = −c1(TX)

is a basic class (SWX(K) = ±1). Also, there exists a compatible J such that Σ is a J-holomorphic

curve. If S ⊂ X is another surface [S] = [Σ], then by Adjunction we know that

2g(S)− 2 ≥ [Σ]2 +K · [Σ] = 2g (192)

by the Adjunction inequality and the Adjunction formula, respectively. This implies that g(Σ) ≤
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g(S). This argument can be extended to b+2 (X) = 1, e.g. X = CP 2. Here we have to be careful to

consider SW in a particular chamber.

Theorem 31. (Thom Conjecture, proved by Kronheimer and Mrowka in 1994). For S ⊂ CP 2

smoothly embedded, [S] = d[CP 1], then

genus(S) ≥ (d− 1)(d− 2)

2
(193)

with (d−1)(d−2)
2 the genus of an algebraic curve of degree d, which we’ll call Σ.

Proof. Apply the above. 2g(Σ− 2 = [Σ]2 +K · [Σ] = d2 − 3d

Corollary 11. (Local Thom Conjecture) If Σ ⊂ C2 is an affine smooth curve, then Σ is locally

genus minimizing, i.e. for B ⊂ C2 a ball, ∂B t Σ, and another surface S ⊂ B is a surface such

that ∂B ∩ S = ∂B ∩ Σ, then g(S|B) ≥ g(Σ|B).

Proof. Compactify Σ to Σ ⊂ CP 2. Σ may not be smooth but we can deform it to Σε smooth. We

can isotope S to Sε (same genus) such that Sε ∩ ∂B = Σε ∩ ∂B. The Thom Conjecture says that

g(Sε ∪ (Σε −B)) ≥ g(Σε)⇒ g(Sε|B) ≥ g(Σε|B), which is equal to g(S|B) ≥ g(Σ|B).

Definition 25. For any K ⊂ S3 knot, the 4-ball genus or slice genus of K is

gs(K) = min{g(S)|S ⊂ B4, ∂S = S ∩ ∂B = K} (194)

for S smoothly and properly embedded.

Definition 26. K is a slice knot if gS(K) = 0. i.e. bounds D2 ⊂ B4.

Example 39. See Figure 19. (In four dimensions this is embedded, because we can have different

colors where the disk intersects itself)

Corollary 12. If K arises as a transverse intersection ∂B ∩ S, S ⊂ C2 is an affine curve. Then

gs(K) = g(S|B).

Example 40. Torus knots Tp,q, p, q ≥ 1, gcd(p, q) = 1. Written explicitly in coordinates, if we
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Figure 19: A slice knot.

have

S0 = {xp − yq = 0} ⊂ C2 (195)

then Tp,q = S0 ∩ B(
√

2) ⊂ T 2 = {x||x| = 1}{y||y| = 1}. If (x, y) ∈ S0, then |x| = |y|, and

(x, y) ∈ ∂B(
√

2), xp = yq ⇒ x = eiqθ, y = eipθ, θ ∈ [0, 2π], so (x, y) ∈ T . S0 as a singularity at 0,

but we can deform it so Sε, e.g. Sε = {xp − yq = ε}. This is smooth, so

Sε ∩ ∂B(
√

2) (196)

which is isotopic to Tp,q. What is g(Sε∩B(
√

2))? We can compute this using the Riemann-Hurwitz

formula. We look at the (q : 1 cover) map

Sε → C (197)

(x, y) 7→ x ∈ C (198)
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This is a q : 1 cover, but with p branch points: when xp = ε, there exist a unique preimage

(y = 0). By the Riemann-Hurwitz formula, χ(Sε ∩B) = qχ(D2)− p(q− 1). This is p+ 1− pq.

χ(Sε ∩B) = 1− 2g(Sε ∩B), so

g(Sε ∩B) =
(p− 1)(q − 1)

2
(199)

The Local Thom Conjecture implies the

Theorem 32. (Milnor Conjecture, proved by Kronheimer and Mrowka, 1993, 1 year before SW

equations, so using Yang-Mills)

gs(Tp,q) =
(p− 1)(q − 1)

2
(200)

10 Knots

Suppose we have K ⊂ S3 a knot.

Definition 27. The unknotting number u(K) is minimal number of crossing changes needed to

turn K into the unknot.

e.g. u(K) = 0 if and only if K is the unknot. The trefoil knot has u(K) = 1. (trefoil is T2,3)

Lemma 4. gs(K) ≤ u(K). (The slice genus is less than or equal to the unknotting number)

Proof. If we have k crossing changes from K to U , we get a surface ⊂ B4, ∂Σ = K, g(Σ) = k.

Going from one crossing to its resolution corresponds to the surface’s saddle point.

Exercise: The standard diagram of Tp,q can be unknotted in (p−1)(q−1)
2 moves.

Corollary 13. u(Tp,q = (p−1)(q−1)
2

Proof. (p−1)(q−1)
2 = gs(Tp,q) via the Milnor Conjecture, and this is ≤ u(K) ≤ (p−1)(q−1)

2 .

Which knots arise as a surface S ∩ ∂B4 where S ⊂ C2 is affine (algebraic), and S t B4? To

answer this we need some notions.

Definition 28. A braid is a closed loop in Confn(R) = {x ⊂ R2|Card(x) = n} starting and

ending at {(1, 0), (2, 0), ..., (n, 0)}.
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Remark 35. Every braid is a composition of crossings.

Definition 29. Bn = π1(Confn(R2)) is the braid group - generated by σi, i = 1, ..., n − 1. The

relations are

σiσj = σjσi, |i− j| ≥ 2, (201)

σiσi+1σi = σi+1σiσi+1 (202)

Definition 30. A braid is called positive if it’s a product of σis only (not their inverses).

Definition 31. A braid is quasi-positive if it’s of the form

m∏
k=1

wkσiw
−1
k , (203)

wk ∈ Bn is any word (204)

If we have a braid b ∈ Bn, we can take its closure b̂, where we close its strands. See the top of

Figure 20. This gives a link. In the case of the diagram, it’s a knot.

Theorem 33. Every link is the closure of a braid.

Definition 32. A knot (or link) is braid positive (resp. quasipositive) if it’s the closure of a

positive (resp. quasipositive) braid.

Example 41. The torus knots Tp,q are braid positive.

Theorem 34. (Rudolph, Boileau-Orevkov) K ⊂ S3 is of the form S∩, where S ⊂ C2 is an

algebraic curve, S t ∂B if and only if K is quasipositive. In fact, if K = b̂, where b is quasipositive:

b =
∏m
k−1(wkσiw

−1
k ) then K bounds a complex curve of genus m−n+1

2 .

Corollary 14. (above theorem and the Local Thom Conjecture): gs(K) = m−n+1
2 for quasipositive

K.

Remark 36. For braid positive knots, one can show that this is also u(K) = gs(K) = m−n+1
2 .

For general quasipositive knots, u(K) may be bigger than gs(K). The 820 knot is quasipositive,

slice (gs(K) = 0), but u(K) = 1.

See the bottom of Figure 20 for the 820 knot. See: Knot Info, Knot Atlas.
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Figure 20: The braid closure and 820 knot.

11 Donaldson’s Diagonalizability Theorem

Theorem 35. (Donaldson’s Diagonalizability Theorem) If X4 smooth, closed, simply-connected,

and QX is definite, then QX is diagonal.

Remark 37. This was originally proved by Donaldson in 1982 using Yang-Mills theory.

Proof. (Seiberg-Witten version) Let’s say QX is negative definite (otherwise switch orientations).

Then b+2 (X) = 0, so we cannot avoid reducibles among solutions to SW equations. Picka metric g

and a Spinc structure, c1(S+) = K ∈ Char(X).

M̃SW = {(A, φ)|d∗(A−A0) = 0} (205)

MSW = M̃SW /S
1 (206)

By transversality, for a generic perturbation η, M̃SW is a smooth manifold of dimension K2−σ
4 −

b+ + b1 = K2+b2
2 , since b2(X) = −σ(X) = b−2 (X) (negative because it’s negative-definite) := d+ 1,

where d is the expected dimension of MSW . We have some reducibles. How many? Well, a
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reducible is (A, φ), φ = 0, so all we need to satisfy is F+
A = η, F+

A0
+ d+(A − A0) = η,A − A0 :=

a ∈ Ω1(X; iR). Thus we need to solve

d+a = η − F+
A0

(207)

We have the sequences

Ω0 d−→ Ω1 d+−−→ Ω2
+ (208)

H0 → H1 → H2
+ (209)

H1 = H1
+ = 0. The d+a = η − F+

A0
has a solution which is unique mod gauge. (d∗a = 0), and

ker(d+ + d∗) = H1 = 0, so there exists a unique reducible x. The local model in M̃SW near x

where the S1 action is trivial and everywhere else it is free. There is a diffeomorphism taking this

to the origin in Cm:

eiθ(z1, ..., zm)→ (eiθz1, ..., e
iθzm) (210)

So when we divide by S1 in MSW , we get a cone on S(Cm)/S1 = CPm−1, with x as the point.

So when we divide by gauge, this is why we don’t want reducibles.

Let M∗SW = MSW − {x} be the irreducible locus. This is a smooth manifold of dimension

d = 2m− 1. We can take a line bundle L→M∗SW , with

L[(A,φ)] = {(A, zφ)|z ∈ C}, (211)

L|CPm1 = tautological line bundle (212)

But c1(L) = u ∈ H2(M∗SW ), with u resCPm−1

−−−−−−−→generator ofH2(CPm−1, so um−1[CPm−1] = 1. But

CPm−1 bounds a cycle inM∗SW , so [CPm−1] = 0 ∈ H2m−2(M∗SW ), which is almost a contradiction!

(assuming m > 0) If m < 0, the M∗SW =, ˜MSW = {x}, so we avoid this contradiction. The

65



conclusion is that m must always be negative, so

m =
K2 + b2

8
≤ 0 (213)

i.e. we need K2 ≤ −b2,∀K ∈ Char(X) = {K ∈ H2|K · a ≡ a2 mod 2,∀a}. So now we’re down to

algebra.

Q : Zr × Zr → Z (214)

such that K2 + r ≤ 0,∀K ∈ Char. There is a theorem by Elkies that says that if Q is a symmetric

unimodular bilinear form with this property, then Q is diagonal, i.e. Q = r〈−1〉. Therefore QX is

diagonal.

Remark 38. The above proof works whenever H1(X) = 0. By killing off generators of H1(X;R)

by surgery on loops, we can reduce to the case H1(X) = 0; we get

Theorem 36. For X4 smooth, closed; QX-definite, then QX is diagonal.

12 K3 Admits Infinitely Many Smooth Structures

Definition 33. Fintushel-Stern knot surgery (in dimension 4): find a torus T ⊂ X = K3 a

nondegenerate elliptic fiber, [T ]2 = 0, [T ] 6= 0. A neighborhood of T ∼= T × D2 ⊂ X, ∂nbhd(T ) =

T × S1 = T 3. Let

XK = (X − nbhd(T )) ∪T 3 (S1 × (S3 − nbhd(K))), (215)

K ⊂ S3 is any knot (216)

the gluing is such that

∗ × ∂D2 7→ ∗ × (longitude of K) (217)

66



By Mayer-Vietoris and Seifert-Van Kampen, we can compute that

π1(XK) = π1(X) = 1, QXK
∼= QX (218)

Freedman showed that XK , X are therefore homeomorphic. Write the Seiberg-Witten invariants

SWX : Char(X)→ Z (219)

as a formal power series,

∑
K∈Char(X)

SWX(K)ek (220)

(where the ek is just a formal way to keep track of what characteristic elements we have).

E.g. for X = K3, c1(X) = 0, this is a Calabi-Yau. SWX(0) = 1 for symplectic mani-

folds/Kähler surfaces. In fact, SWK3 = 1.

Theorem 37. (Fintushel-Stern) SWXK = SWX ·∆K(t), t = e2[T ], where ∆K(t) is the Alexander

polynomial of the knot K.

Definition 34. For ∆(t) of the positive crossing, this is equal to ∆(t) of the negative crossing +

(t1/2 − t−1/2)∆nocrossing(t), and ∆0(t) = 1 is the Alexander Polynomial. (see Skein relations)

Example 42. ∆trefoil(t) = t− 1 + t−1.

For example X = K3, SWXK = ∆K(t); so for K the trefoil, SW = e2[T ] − 1 + e−2[T ]. Thus

SW (Xtrefoil, s) is:

1. 1 if s = ±2[T ]

2. -1 if s = 0

3. 0 otherwise.

Corollary 15. If ∆K1(t) 6= ∆K2(t), then XK1 and XK−2 are not diffeomorphic.

Some properties of K(t) are:

1. ∆K(t) = ∆K(t−1)

2. ∆K(1) = 1

3. Every polynomial with these properties appears as ∆K(t) for some K.
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An open question is if we can have ∆K1
(t) = ∆K2

(t), but XK1
and XK2

are not diffeomorphic.

We know that XK
∼= Xm(k), where m(K) is the knot with diagram the mirror reflection of that

of K, XK1#K2
∼= XK1#m(K2).

Definition 35. K is prime if K 6= K1#K2 with K1,K2 are not the unknot.

Theorem 38. (Gordon-Luecke) If K1,K2 are prime knots, π1(S3−K1) = π1(S3−K2)⇒ K1 = K2

or m(K2).

An open question is if π1(S3 − K) determines the diffeomorphism type of XK . If so, then

simply connected 4-manifolds are at least as complicated as knots.

13 Furuta’s 10
8 Theorem

Theorem 39. ( 10
8 Theorem, Furuta) Let X4 be smooth, closed, simply connected, spin (QX even).

Then b2(X) ≥ 10
8 |σ(X)|, i.e.

QX = m

0 1

1 0

⊕ 2p(−E8) (221)

for m ≥ 2p.

If QX is even then 0 ∈ Char(X),∃s ∈ Spinc(X), c1(s) = 0. The Spinc structure coming from

the spin structure. Then s = s, to the SW equations are invariant under conjugation (they’re

always invariant under conjugation)

(A, φ)
j−→ (−A, φ) (222)

(taking complex conjugate, because it’s in complex space) and symmetry under S1 constant gauge

transformation gives

(A, φ)
eiθ−−→ (A, eiθφ) (223)

By the spin structure, the SW equations have a Pin(2) symmetry:

Pin(Z) = S1 ∪ j · S1 ⊂ C⊕ j = H (224)
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since jeiθ = e−iθj.

˜SW : Γ(S+)⊕ Conn→ Γ(S−)⊕ Ω2
+ ⊕ Ω0/R (225)

˜SW (φ,A) = (/DAφ, F
+
A − γ

−1(φφ∗)0, d
∗(A−A0)) (226)

where the term is via the Coulomb gauge, and Conn ∼= Ω1.

˜SW : H∞ ⊕ R̃∞ → H∞ ⊕ R̃∞, (227)

Pin(Z) : H→ H (228)

by left multiplication. Pin(Z) acts on R̃ trivially on S1, and j acts by -1. In the SW equations, we

don’t really want to work with smooth sections, rather we want to work in Sobolev completions.

Let E → M be a vector bundle with an inner product and connection, and M a Riemannian

manifold. C∞(E) are smooth sections, L2
k(E) is the kth Sobolev completion, and ϕ ∈ L2

k(E)

satisfies ϕ,∇ϕ, ...,∇kϕ ∈ L2. L2
k(E) is a Hilbert space, with

||ϕ||2L2
k

= ||ϕ||2 + ||∇ϕ||2 + ...+ ||∇kϕ||2 (229)

Remark 39. Note that different metrics and connections give rise to equivalent norms.

In each case,

˜SW : L2
k(S+ ⊕ T ∗X)→ L2

k−1(S− ⊕ Λ2
+T
∗X ⊕ R)/R (230)

both of these are Hilbert spaces; let’s call them H and H ′. ˜SW = l + c, where l is linear

and c is comprised of quadratic and constant terms. l = dA0
˜SW = (/D+

A0
, d+ + d∗). Recall

that index(l) = dim(ker(l)) − dim(coker(l)) = c1(S)2−σ
4 − b+2 . index(/DA0

) = c1(S)2−σ
4 = −σ4 ;

index(d+ + d∗) = −b+2 .

Definition 36. Finite-dimensional approximation (Furuta) is the following:

Since ˜SW : H → H ′. Choose a sequence of finite-dimensional subspaces

coker(l) ⊂ Vn ⊂ Vn+1 ⊂ ... ⊂ H ′ (231)

69



B(R)

B(2R)

B(ε)

Un Vn

˜SWn

Figure 21: Approximating ˜SW on a bounded set.

Let Un = l−1(Vn) ⊂ H.

˜SWn = l + pVnc : Un → Vn (232)

where pVn is the L2−orthogonal projection to Vn. This is the finite-dimensional approximation to

˜SW .

Recall that the main property of the SW equations is that ˜SW
−1

(0) is compact.

Theorem 40. There exists R, ε > 0, such that ∀n»0, if x ∈ Un satisfies ||x|| < 2R and | ˜SWn(X)| <

ε, then ||x|| < R.

The idea is that ˜SWn is a good approximation to ˜SW on bounded sets like B(2R). See Figure

21. (make sure R is big enough to contain the actual moduli space to the SW equations and a

little bit more, so the things that are almost solutions are within epsilon of the solution). From
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the theorem, we get a map

˜SW
+

n : B(2R)/∂B(2R)→ B(ε)/∂B(ε) (233)

x 7→ ˜SWn(X) if | ˜SW (X)| < ε, (234)

x 7→ ∗ otherwise (235)

This way we get a map between spheres that is Pin(2)−equivariant,

˜SW
+

n : U+
n → V +

n (236)

as Pin(2)-representations: Vn = Ha ⊕ R̃b, Un = l−1(Vn) = Ha− σ
16 ⊕ R̃b−b

+
2 , because, in finite

dimensions, index(l) = dimUn − dimVn = dim(ker(l))− dim(coker(l)). If

QX = m

0 1

1 0

⊕ 2p(−E8), (237)

σ = −16p, b+2 = m (238)

gives us a Pin(2)-equivariant map

f : (Ha+p ⊕ Rb−m)+ → (Ha ⊕ R̃b)+ (239)

For a := A − A0, what is ˜SW |(0⊕R̃∞)+ : (0, a) → (0, (d+ + d∗)a) linear, so we get f |(0⊕R̃b−m)+ =

inclusion(R̃b−m)+ ↪→ (R̃b)+, where the restriction is to an S1-invariant subspace of Pin(2). Furuta

proved, using Pin(2)-equivariant K-theory that the existence of such a map implies m ≥ 2p + 1,

assuming p > 0, and proved a bit more, namely “m ≥ 2p′′ : 10
8 −Theorem.

Remark 40. Hopkins-Lin-Shi-Xu (2018), using Pin(2)−equivariant stable homotopy theory, showed

that a Pin(2) map with the above properties exists if and only if:

1. m ≥ 2p+ 2, p ≡ 1, 2, 5, 6 mod 8

2. m ≥ 2p+ 3, p ≡ 3, 4, 7 mod 8

3. 2p+ 4, p ≡ 0 mod 8

This is thus the best we can do using Seiberg-Witten theory. The 11
8 −Conjecture remains open:

m ≥ 3p.
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14 Exotic structures on R4

Let X = CP 2#9CP 2. QX = 〈1〉 ⊕ 9〈−1〉. Notice QX is indefinite and odd, so QX = (−E8)⊕

〈−1〉 ⊕ 〈1〉. Let the 〈1〉 be the span of some α ∈ H2(X;Z), α2 = 1. Donaldson’s Theorem implies

that α cannot be represented by a smoothly embedded sphere. Recall that every homology class can

be represented by a surface, but here it cannot be genus 0. Otherwise nbhd(α) = D2-bundle over S2

of Euler number 1 (because the self-intersection is 1). This is just equal to CP 2−B4, ∂nbhd(S) =

S3. But if this were true then we could have X = X ′#CP 2, QX′ = (−E8) ⊕ 〈−1〉. This is

a definite intersection form, but not diagonal (see Homework 1), so this violates Donaldson’s

theorem. Freedman theory says that α can be represented by a topological sphere, which is a

Casson handle ∪D2. Call this sphere Σ ⊂ X. This has the property that a neighborhood U of Σ

smoothly embeds in CP 2. Furthermore, U is homeomorphic to CP 2 − B4, which is a topological

sphere.

Lemma 5. Z = CP 2 − Σ is homeomorphic to R4

Proof. (Freedman’s theorem for open 4-manifolds) Use π1(Z) = 1, H∗ = 0 implies Z is contractible

(using Mayer-Vietoris and Seifert-Van Kampen). We need also that Z is simply connected at

infinity, i.e

Definition 37. ∀c ⊂ Z compact, there exists D ⊂ Z compact C ⊂ D such that π1(Z − D) →

π1(Z − C) is trivial means that Z is simply-connected at infinity.

In our case, Z ∪U is homeomorphic to CP 2−B4−CP 1 = S3× (0, 1), which is the “end of Z,”

which is contractible.

Lemma 6. Z is not diffeomorphic to R4.

Proof. Assume it is. In R4, every compact subset can be surrounded by a standardly embedded

S3. Our exotic R4 will not have this property. Let K = CP 2 − U . This is compact. We get that

this is surrounded by S. Get X ′′ = (X − nbhd(Σ)) ∪ B4. This is a smooth simply-connected 4-

manifold with QX′′ = (−E8)⊕〈−1〉 which is definite but not diagonal, which contracts Donaldson’s

theorem.

14.1 Uncountability

In fact there are uncountably many exotic R4s. We found an exotic R4 ER4 ⊂ CP 2 as above.

Let h : R4
∼=−→ ER4 be a homeomorphism. Let h(B4(ρ)) = ER4

ρ.
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∼=

Σ
YsYx

ϕ−1(Yx)

Yt

CP 2

X − U

ER4
t

ER4
s

...

Figure 22: ϕ diffeomorphism.

Theorem 41. (Taubes) There exists a ρ0 > 0 such that for all s > t > ρ0,

ER4
s � ER

4
t (240)

Proof. (SKETCH) Suppose ϕ : ER4
t → ER4

s is a diffeomorphism. Let h(S(ρ)) = Yρ. ER4 =

CP 2 − Σ. Pick x ∈ (t, s), and consider ϕ−1(Yx). See diagram 22. (From here we can construct

a smooth 4-manifold with periodic ends. Call this periodic manifold W ) We then have QX =

QX−u = (−E8)⊕(−1). Taubes proved (using Yang-Mills theory) a version of Donaldson’s theorem

for smooth manifolds with periodic ends. Therefore QW should have been diagonal.

Remark 41. There is no known proof with Seiberg-Witten theory. We cannot prove it for manifolds

with periodic ends.
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15 Khovanov Homology

Khovanov homology is a combinatorial invariant of knots K ⊂ R3. This is used to give new

proofs of

1. Milnor Conjecture (cf. Rasmussen)

2. Thom Conjecture (cf. Lambert-Cole)

3. Existence of exotic R4 (cf. Rasmussen-Gompf)

It may also give a possible approach to disproving the smooth 4d Poincaré Conjecture.

Let K ⊂ R3 be an oriented link. Let D be a planar diagram of the link, with over-crossings

and under-crossings.

Theorem 42. (Reidemeister) Two diagrams represent the same link up to isotopy if and only if

they are related by a sequence of Reidemeister moves.

OUTLINE: If we have a diagram D, we get a bigraded complex

C(D) = ⊕i,j∈ZCij(D) (241)

d : Ci,j(D)→ Ci+1,j(D) (242)

which is a cochain complex. Here i is the homological grading, and j is the quantum (Jones)

grading. Here we have d2 = 0. There is a theorem that Kh∗,∗(L) := H∗,∗(C(D)) = ⊕i,jKhi,j(L)

is invariant under the Reidemeister moves; hence it’s an invariant of L. Think of this as a bigraded

abelian group.

Remark 42. Since the d map goes up an index it’s really cohomology, but people are tired of saying

‘cohomology’ so they just call it homology. Furthermore, ‘Khovanov’ is pronounced ‘Hovanov,’ so

it really should be called ‘Hovanov Cohomology.’

χ(Kh∗,∗(L)) =
∑
i,j

(−1)iqjrk(Khi,j(L)) = J̃L(q) ∈ Z[q, q−1] (243)

where
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Definition 38. J̃L(q) ∈ Z[q, q−1] is called the unnormalized Jones polynomial:

J̃L(q) = (q + q−1)JL(q2), t = q2 (244)

JL(t) = the Jones polynomial (245)

characterized by J0 = 1, tJ−cross − t−1J+cross = (t1/2 − t−1/2)Jnocrossing (Skein relations).

Example 43. Consider the unkot L with diagram the infinity sign. tJL − t−1JL = (t1/2 −

t−1/2J2circles), so

J2circles =
t− t−1

t1/2 − t−1/2
= t1/2 + t−1/2 (246)

Example 44. Let L be the hopf link. JL = t5/2 + t1/2 = q5 + q.

Example 45. Let L be the trefoil. JL = t+ t3 − t4 ⇒ q2 + q6 − q8.

J̃L(q) = χ(Kh) = (q + q−1)(q2 + q6 − q8) (247)

= q + q3 + q5 − q9 (248)

LetM be a graded abelian group (think “Jones grading”). M{L} = M with the grading shifted

upward by l. For

C0 → C1 → C2 → ... (249)

be a cochain complex (think “homological grading”). C[s] = C with homological grading shifted

upward by s:

C[s]k = Ck−s (250)

(this is the opposite convention from some sources)

Definition 39. (following Bar-Natan, “On Khovanov’s categorification of the Jones polynomial”)

Let D be a diagram for some oriented link K with n crossings. Let the number of ± crossings

be n±. For example, for D the hopf link, both crossings are positive, i.e. n+ = 2. Regardless of
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0-resolution 1-resolution

Figure 23: Resolution of a crossing

orientation, any crossing looks like a negative crossings (for positive crossings rotate by 90◦. We

get either a 0-resolution or a 1-resolution. See Figure 23. In D we can resolve all crossings in 2n

ways. Resolutions correspond to words α ∈ {0, 1}n giving a cube of resolutions. See Figure 24.

Edges in the hypercube: ξ ∈ {0, 1, ∗}n, ξ = (ξ1, ..., ξn),∃ a unique j with ξj = ∗.

Let V = Z⊕ Z be spanned by V+, V−. The Jones grading gr(V±) = ±1. For every α ∈ {0, 1}n,

we get

Vα(D) := V ⊗k{|α|}, |α| =
∑

αi (251)

where k is the number of circles in Dα.

[[D]]r = ⊕α,|α|=rVα(D) (252)
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*0

0* *1

1*D00

D10

D01

D11

Figure 24: Cube of resolutions for a Hopf link.

The Khovanov complex is given by

C∗,∗(D) = ([[D]]∗[−n−]{n+ − 2n−}, d) (253)

where the square brackets are the shift in homological grading, and the curly brackets are the shift

in Jones grading. For L the hopf link, we have

V {1}

V ⊗2 V ⊗{2}

V {1}

([[D]]0 [[D]]1 [[D]]2){2} C∗,∗(D)

d1,∗d∗,0

d0,∗

d∗,1

=

The differentials are given by the gluing map m taking 2 circles to 1 circle, and the cutting map ∆

taking 1 circle to 2 circles. See Figure 25. These give
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m

∆

Figure 25: Gluing and cutting maps.

V+ ⊗ V+
m−→ V+, V+

∆−→ V+ ⊗ V− (254)

V+ ⊗ V−
m−→ V−, V−

∆−→ V− ⊗ V− (255)

V ⊗2 m−→ V, V
∆−→ V ⊗2 (256)

V− ⊗ V+
m−→ V− (257)

V− ⊗ V−m0 (258)

Tensor these with the identity on all other components. dξ for an edge ξ.

(−1)ξ := (−1)
∑
i<j ξi (259)

where j is the location of * in ξ. For example, ∗0 → sign(±1), ∗1 → +1. The differential on
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v− ⊗ v−

v− ⊗ v+

v+ ⊗ v−

v+ ⊗ v+

v−

v′−

v+

v′+
v− ⊗ v+

v+ ⊗ v−

v− ⊗ v−

v

0 1 2

0

2

4

6

i homological

j

Jones

Figure 26: Complexes for the Hopf link.

the Khovanov complex is

dr : [[D]]r → [[D]]r+1 (260)

dr =
∑
ξ

(−1)ξdξ (261)

where ξ starts at α, |α| = r.

Example 46. In our example of the Hopf link, see 26. These are the complexes for our example.

Taking the homology H = ker(d)
Im(d) , we get

Z 6

Z 4

Z 2

Z 0

0 1 2

This is the Khovanov homology of the hopf link Kh(L).
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Figure 27: d2 = 0.

Lemma 7. In general, d2 = 0.

Proof. We prove this on a case-by-case basis. See Figure 27.

Theorem 43. Khovanov homology is invariant under Reidemeister moves.

Definition 40. For (C, d) a complex, C ′ ⊂ C is a subcomplex if d(C ′) ⊆′, leading to C/C ′ the

quotient complex.

0→ C ′ → C → C/C ′ → 0 (262)

...→ H∗(C ′)→ H∗(C)→ H∗(C/C ′)→ H∗+1(C ′)→ ... (263)

Lemma 8. 1. If H∗(C ′) = 0, (C ′ is acyclic), then H∗(C) ∼= H∗(C/C ′)

2. If H∗(C/C ′) = 0, then H∗(C) ∼= H∗(C ′)

Proof. (Of Reidemeister invariance of Khovanov homology) See Figure 28 and Figure 29 for Rei-

demeister moves 1 and 2. R3 is an exercise (canceling acyclic complexes and subcomplexes).
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x = → {1}

Complex made of all
resolutions that are 0 at x

∼= {1}C ′:

msubcomplex

v+

This is acylcic: H∗(C ′) = 0

C/C ′:

v−

∼= {1} So: H∗(C ′) = H∗(C/C ′)

∼= {-1}

Kh: {n+ − 2n− + 1}
∼= {n+ − 2n−}

Kh ∼= Kh

Figure 28: Proof of Reidemeister move 1 invariance of Khovanov homology.
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Kh ∼= Kh

C :

{1}

{1}

{2}

C ′ :

{1}

{2}0

0

∼=

v+

subcomplex

so C ′ is acyclic; H∗(C) = H∗(C/C ′)

C/C ′ :

{1}

{1}

v− 0

{1}

00

0

C/C ′ ⊃ C ′′ :

so (C/C ′)/C ′′ is acyclic; H∗(C) = H∗(C ′′) (check shifts)

Kh ∼= KhThus

Figure 29: Proof of Reidemeister move 2 invariance of Khovanov homology.
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15.1 Topological Quantum Field Theory & Lee Homology

What was essential in the proof that Kh is a link invariant? We need: a unit 1 ∈ V for M ,

ε : V → Z a counit for ∆, with

ε(V+) = 0 (264)

ε(V−) = 1 (265)

so for:

1. m is a commutative, associative multiplication,

2. ∆ a cocommutative, coassociative comultiplication, and

3. the Frobenius law

∆ ◦m = (m⊗ 1) · (1⊗∆) (266)

Definition 41. This is called a Frobenius Algebra.

A Frobenius Algebra gives a 1+1-dimensional topological quantum field theory, inthat a functor

associating a closed 1-manifold with an abelian group, and a cobordism with a homomorphism.

Remark 43. Every closed 1-manifold is a disjoint union of circles. See Figure 30.

This satisfy the properties in Figure 31.

Remark 44. To get a homological invariant of knots (like Kh), we need V to be a Frobenius

algebra, of rank 2: V ∼= Z⊕ Z.

Example 47. For Kh, we could write V+ = 1, V− = x, V = H∗(S2) = Z[x]/(x2). We also have

∆(1) = 1⊗ x+ x⊗ 1, ε(1) = 0 (267)

∆(x) = x⊗ x, ε(x) = 1 (268)

Example 48. Lee’s deformation of Khovanov homology: from V = Z[x]/(x2 − t) over R = Z[t];

(we’ve been talking about abelian groups, but we could use any module over a commutative ring).
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V
∆−→ V ⊗ V

V ⊗ V m−→ V

Unit: 1: V (φ)→ V (S1)
Z→ V

Counit: ε : V → Z

→ Fε : V (S1 t S1)→ V (S1)
V (S1)⊗ V (S1), V (S1) = V

Figure 30: (1 + 1)-topological quantum field theory.

We have 1 and ε as before, and

∆(1) = 1⊗ x+ x⊗ 1 (269)

∆(x) = x⊗ x+ t(1⊗ 1) (270)

m(V+ ⊗ V−) = V−,m(V+ ⊗ V+) = V+ (271)

m(V− ⊗ V+) = V−,m(V− ⊗ V−) = tV+ (272)

∆(V+) = V+ ⊗ V− + V− ⊗ V+ (273)

∆(V−) = V− ⊗ V− + tV+ ⊗ V+ (274)

so we get a complex C ′(D) of Z[t]-modules. For t = 0, this is C(D), the Khovanov complex, and
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m is associative:

=

∆ ◦ (ε⊗ Id)

= =

∆ ◦m = (m⊗ Id)(Id⊗∆)

=

Figure 31: (1 + 1)-topological quantum field theory properties.
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for t = 1, CLee(D) a Lee complex. For D a link diagram,

C(D)
H∗−−→ Kh(K) Khovanov homology (over Z) (275)

CLee(D)
H∗−−→ Lee(K) Lee homology (over Z) (276)

C ′(D)
H∗−−→ Kh′(K) Kohvanov-Lee homology (overZ[t]) (277)

The differential on C ′(D) is d+ tΦ; d changes (i, j) by (1, 0), and Φ changes (i, j) by (1, 4), where

the indices are (homological, quantum). We have d,Φ : C → C with d2 = 0, (d + Φ)2 = 0,Φ2 =

0, dΦ + Φd = 0. This is a filtration on C given by −q:

... ⊂ Cq≥j+1 ⊂ Cq≥j ⊂ ...

d+Φ d+Φ

giving a filtered complex, giving a spectral sequence, i.e. a collection of page = complexes (Er, dr), dr◦

dr, Er+1 = H∗(Er, dr), E1(C∗, d), E2(H∗(E1),Φ∗) = (Kh(K),Φ∗), E4, E4, ... This converges to

E∞ = H∗(Cd + Φ). In our case, spectral sequences from E2 = Kh(K) result in E∞ = Lee(K).

Thus changes in grading are:

d1 = d, (i, j)→ (i+ 1, j) (278)

d2 = Φ∗, (i, j)→ (i+ 1, j + 4) (279)

... (280)

dn, (i, j)→ (i+ 1, j + 4(n− 1)) (281)

Example 49. For the trefoil, see Figure 32. since Φ∗ maps (2, 5) to (3, 9), and removes them.

From now on let’s work in Q coefficients, i.e. Kh(K) will denote Kh(K)⊗Q.

Example 50. The Lee homology has E3 = E∞, seen in Figure 33.

Theorem 44. Lee(L)⊗Q = Q2l−1

, where l = # components of l. (e.g. for a knot, Lee ∼= Q⊗Q).

Proof. Over Q, we can define a new basis for V , namely a = V+ + V−, b = V− − V+. The Lee
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0 1 2 3

1

3
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7

9

Z

Z

Z

Z

Z2

E2

0 1 2 3

1

3

5

7

9

Z

Z

Z

Z2

E3

Φ
∗

Z

Figure 32: E2, E3 pages in this spectral sequence.

0 1 2 3

1

3

5

7

9

Q

Q

E3

Figure 33: E3 = E∞ page in Lee homology.
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operations are

m : a⊗ a→ 2a (282)

m : a⊗ b, b⊗ a→ 0 (283)

m : b⊗ b→ −2b (284)

∆ : a→ a⊗ a (285)

∆ : b→ b⊗ b (286)

We claim that Lee(L) is generated by the following “canonical generators”: for σ an orientation

of L (there are 2l such σ). This gives Dσ an oriented resolution (at all crossings). For C ∈

Dσ, τ(C) ∈ Z2, where τ(C) is the number of circles separating C from ∞, plus 0 if C is oriented

counterclockwise, and 1 if it’s oriented clockwise, mod 2. In generatal let sσ = ⊗gC , C ∈ Dσ,

where gC is a if τ(C) = 0, b if τ(C) = 1. This is an element in the Lee complex. E.g. sσ = a⊗b⊗a

for the trefoil. They are cycles: (d+ Φ)sσ = 0, because circles labeled the same (both a or both b)

in Dσ do not touch at crossings. So [Sσ] ∈ Lee(E). Put an inner product on CLee(D) by making

the generators a⊗ a⊗ b⊗ ... on an orthonormal basis.

Lee(D) = H∗(CLee(D)) = ker(d+ Φ)/Im(d+ Φ) ∼= ker(d+ Φ) ∩ ker(d+ Φ)∗ (287)

where the * is the adjoint with respect to the inner product making the generators an orthonormal

basis, with

(d+ Φ)∗ : a⊗ a→ a (288)

b⊗ b→ b (289)

a→ 2a⊗ a (290)

b→ −2b⊗ b (291)

rest→ 0 (292)

We have (d+ Φ)∗sσ = 0, so sσ ∈ ker(d+ Φ) ∩ ker(d+ Φ)∗. Thus dim(Lee(D)) ≥ 2l.
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To prove that dim(Lee(D)) = 2l, we proceed by induction on the number of corssings in D.

For a resolution D → D0, D1, we have CLee(D1) ⊂ CLee(D) a subcomplex. So we have a short

exact sequence

0→ CLee(D1)→ CLee(D)→ CLee(D0)→ 0 (293)

inducing a long exact sequence

...→ Lee((D1)→ Lee(D)→ Lee(D0)→ Lee(D1)→ ... (294)

We have two cases:

1. The two strands at x are from different components of L; D0, D1 have l − 1 components.

By induction, dim(Lee(D0)) = dim(Lee(D1)) = 2l−1, dim(Lee(D)) ≤ dim(Lee(D0)) +

dim(Lee(D1)) = 2l−1 + 2l−1 = 2l, so dim(Lee(D)) = 2l.

2. The two strands are from the same component. Then D0 has l components, D1 has l + 1

components, or vise versa.

...→ Lee(E)→ Lee(D0)
i−→ Lee(D1)→ ... (295)

We can check that the canonical generators map to half of the cannonical generators under

i, so dim(Lee(D)) = dim(coker(i)) = 2l.

15.2 Rasmussen’s Invariant

Recall the Milnor Conjecture. For a knot K ⊂ S3,

Theorem 45. (Milnor’s Conjecture) If K = Tp,q with p, q > 0 coprime, then gs(Tp,q) = (p−1)(q−1)
2 .

This was proved by Kronheimer-Mrowka in 1993, using Yang-Mills theory. We gave a proof

with Seiberg-Witten theory based on the adjunction inequality. Here we give a combinatorial proof

due to Rasmussen (2004), so we can avoid analysis.

Tp,q can be unknotted with (p−1)(q−1)
2 crossing changes. Then we get a surface Σ with ∂Σ =
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Tp,q, with g(Σ) = (p−1)(q−1)
2 , so therefore gs(K) ≤ (p−1)(q−1)

2 . Rasmussen defined an invariant

s(K) ∈ 2Z from Khovanov-Lee homology such that:

1. |s(K)| ≤ 2gs(K),

2. s(Tp,q) = (p− 1)(q − 1)

These two facts, combined with g(Σ) = (p−1)(q−1)
2 give a proof of the Milnor Conjecture. We will

work with coefficients in Q. Khovanov homology as we looked at it was in terms of Z, but we’ll just

tensor everything with Q. If we have D a diagram for a knot K, we have (C(D), d) the Khovanov

complex with differential d leading to Khovanov homology Kh(K). We also can add Φ to get Lee

homology: CLee(D) = (C(D), d + Φ)
H∗−−→ Lee(K) ∼= Q ⊕ Q (for a knot). Because we have this

double complex, we have a spectral sequence Kh(K)→ Q⊕Q. Recall that C(D) has a quantum

grading gr(q, j) and a homological grading gr(i). d changes (i, j) by (1, 0), and Φ changes (i, j) by

(1, 4). So CLee(D) has a filtration

... ⊃ Cq≥iLee(D) ⊇ Cq≥i+1
Lee (D) ⊇ ... ⊇ 0 (296)

and at some point to the left we get the whole Lee complex CLee(D). This is going to be CLee(D) =

Cq≥−NLee (D) (and Cq≥NLee (D)) for some N >> 0. What about at the level of homology? For homology

let’s define Ij = image(H∗(Cq≥jLee → H∗(CLee))) ⊂ Lee(D), so these are the terms that come from

the filtration level j. Then

Lee(D) = I−N ⊇ I−N+1 ⊇ ... ⊇ IN = 0 (297)

Lee(D) ∼= ⊕j(Ij/Ij+1) (298)

This gives a grading on Lee(D).

Definition 42. If we have s ∈ CLee(D), we can talk about q(s) the q-grading of s. q(s) is the

maximal grading

q(s) = max{j|s ∈ Cq≥jLee (D)} (299)

[s] ∈ Lee(D), q([s]) = max{j|q(x) = j, x ∈ [s]} (300)

Notice that q(s) may be different from q([s]).

Proposition 2. If K is a knot, then the two generators of Lee(K) ∼= Q⊕Q are in gradings s− 1
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and s+ 1 for some s ∈ 2Z.

Definition 43. s = s(K) is the Rasmussen invariant.

Proof. Recall that Lee(K) is generated by canonical generators [so], [so], where o is the orientation

of K and o is the opposite orientation. Notice that CLee(D) is supported only in odd quantum

gradings. (For a link it’s in n ≡ l mod 2, where l is the number of components). The quantum

grading q(V−) = −1, q(V+) = +1. Define CLee,even(D) be the part generated by elements with

q ≡ l mod 4, and CLee,odd(D) = q ≡ l + 2 mod 4. Recall that d,Φ preserve q mod 4, so d + Φ

preserves these gradings, i.e. CLee(D) ∼= CLee,even(D)⊕CLee,odd(D) since d+Φ is an automorphism

on these summands. Thus Lee(K) = Leeeven(K) ⊕ Leeodd(K). Define ι : CLee(D) → CLee(D),

with

1. ι = +1 on CLee,even

2. ι = −1 on CLee,odd

So for x ∈ CLee(D), we have

x = (
x+ ι(x)

2
) + (

x− ι(x)

2
) (301)

in CLee,even and CLee,odd, respectively. Let i : V → V, i(V−) = V−, i(V+) = −V+,⇒ ι = ±i⊗n.

We had a = V− + V+ and b = V− − V+, with i(a) = b, i(b) = a. So now if we look at so vs. so,

both come from Do = Do the oriented resolution (the oriented resolution is the same as that of

the opposite resolution). This gives i([so]) = ±± [so]. This gives

so = (
[so] + [so]

2
) + (

[so] + [so]

2
) (302)

where one is even and one is odd, so [so + so] is even and [so + so] is odd, or vise versa. Then the

two Qs in Q⊕Q = Lee(K) live in different q mod 4 gradings. Say the gradings are smax > smin,

smax − smin ≡ 2 mod 4 Observe that q([so]) = q([so])=smin . To show smax − smin = 2, consider

the complex CLee(D′), where D′ results from adding a twist to D (see Figure 34). We take the
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CLee D

k

= CLee D

k

D

k

CLee = CLee D

Figure 34: Adding a twist to a knot in the Lee complex.

resolution of D′ to get D plus a circle or D plus the other resolution, which is just D. This gives

0→ CLee(D)→ CLee(D
′)→ CLee(D ∪ ◦)→ 0 (303)

...→ Lee(K)→ Lee(K)→ Lee(K ∪ ◦) ∂−→ Lee(K)→ ... (304)

Recall that Lee(K ∪ ◦) = Lee(K)⊗ V . The canonical generators of CLee(K) are sa, sb according

to their label near x of either a or b. Without loss of generality, let q(sa − sb) = smax and

q(sa + sb) = smin. We need to check explicitly that ∂([sa − sb]⊗ [a]) = [sa]. For this we just look

at the explicit definition of the generators. If this is true we get that q([sa − sb]⊗ a) ≤ q([sa])+1.

This is because the ∂ map is a boundary map, and decreases grading by 1. This is equal to

smax − 1 ≤ smin + 1⇒ smax ≤ smin + 2, smax − smin ≡ 2 mod 4, giving us smax = smin + 2.

Proposition 3. |s(K)| ≤ 2gs(K).

Proof. We use the functoriality of Khovanov-Lee homology under link cobordisms, i.e. Σ ⊂ R3 ×

[0, 1] with ∂Σ = (−L0) ∪ L1. We want to construct a map FΣ : Kh(L0) → Kh(L1). By Morse

theory, we can split Σ into index 0, index 1, and index 2 critical points, corresponding to minima,

saddles, and maxima. In terms of diagrams, we can represent the cobordism as a movie of diagrams:
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D0 as a diagram for L0 to D1 a diagram for L1. There is a sequence of moves given by Reidemeister

moves R1, R2, R3 and Morse moves, M1 :→ ◦,M2 a map between saddles, and M3 : ◦ →. To

each move we associate a map on Kh. To Reidemeister moves, these are isomorphisms from the

proof of invariance. To the Morse moves, we have

→ ◦ (305)

1→ v+ (306)

◦ ε−→ (307)

v− → 1 (308)

v+ → 0 (309)

and the saddle maps eitherm or ∆. from the Frobenius algebra. As an aside, the defines a map FΣ,

which is well-defined up to ±1 as an invariant on Σ, i.e. it doesn’t depend on the decomposition

of Σ (up to isotopy). This is a theorem of Khovanov and independently of Jacobsson. The same

thing works for Lee homology:

FLee,Σ : Lee(L0)→ Lee(L1) (310)

Proposition 4. If Σ is an oriented cobordism from L0 to L1 such that every component of Σ

has a boundary component on L0, then FΣ,Lee([so/L0
]) is a nonzero multiple of [so/L1

] (o is the

orientation on Σ).

The proof of this is to check under each Reidemeister and Morse move explicitly. Hence, if Σ is a

connected cobordism between knotsK0,K1, then FLee,Σ : Q⊕Z→ Q⊕Q is an isomorphism. Say Σ

has minimal genus, i.e. gs(K). How does FLee,Σ change the grading. We claim that it changes the

homological grading by 0 and the quantum grading by at least χ(Σ). Let x ∈ Lee(K)−{0} be a class

of grading smax = s+ 1. Then what we get is that q(FΣ′(x)) ≥ q(x) +χ(Σ′). FΣ′(x) ∈ Lee(◦) = V

(Lee homology of the unknot), and q(x)+χ(Σ′) = s+1−2gs(K). Therefore s ≤ 2gs(K). By taking

the mirror of K m(K) (we reflect), this bounds the surface Σ (Σ with the opposite orientation, so

same genus). s(m(K)) = −s(K), so −s(K) ≤ 2gs(K). Thus |s| ≤ 2gs(K).
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We need one more thing to prove the Milnor conjecture.

Proposition 5. s(Tp,q) = (p− 1)(q − 1).

We generalize this to the calculation of s for positive knots.

Definition 44. K ⊂ R3 is positive if it has a diagram with all crossings being positive (left

crosses over to the right).

For a positive crossing, the 0-resolution is the oriented resolution D → Do, where o is the

orientation of K.

Proposition 6. If K has a positive diagram D with n positive crossings, and D0 consists of k

circles, then the Rasmussen invariant s(K) = n+ 1− k.

This would give a very explicit way of computing the Rasmussen invariant, as least for positive

knots.

Proof. Recall that s is the q-grading of a combination of the canonical generators:

s =
q([so] + [so])+q([so]−[so])

2
(311)

One of [so]± [so] is in degree s−1, the other in degree s+ 1 (in filtration degree on the homology).

But q([so]) = q([so])=s−1 because it’s a linear combination of something in filtration degree s − 1

and something deeper in filtration in degree s + 1, and the linear combination is still in degree

s− 1, as this is the lowest we can go. q([s0]) = max{q(x)|x homologous to s0}. x = so + dα. For

example, for the trefoil, the positive resolution is the resolution giving the center circle. Label the

inner circle a and the outer circle b. so = a⊗ b, where a = v+ + v−, b = −v+ + v−. so lives in the

lowest homological grading.

01

00 11

10

On the left side of the cube is the 0-resolution. So Im(d) = 0 in [[Do]], therefore s0 is the

unique class homologous to so. Therefore q([so]) = q(so). so is a product of as and bs: so =

(v+±v−)⊗(v+±v−)⊗... has the same filtration degree as v−⊗v−⊗... So q(so) is -1 k times, since we
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had k circles in the resolution, plus n (n+−2n−), n− = 0, n+ = n. This gives q(so) = n−k = s−1,

so s = n+ 1− k.

Example 51. For Tp,q (which is positive), n = pq crossings, k = p + 1 circles with the oriented

resolution. This gives s(Tp,q) = pq− (p+ q) + 1 = (p− 1)(q− 1). This concludes the combinatorial

proof of Milnor’s Conjecture.

Let’s also give a new proof of the existence of exotic smooth structures on R4. This will involve

Khovanov homology, and will not involve Gauge theory. It does, however, involve several results

from Freedman.

• Step 1: Prove the existence of a topologically slice knot that isn’t smoothly slice.

Definition 45. K is (smoothly) slice if there exists a smoothly, properly embedded disc D ↪→ B4

such that ∂D = K ⊂ S3 (i.e. gs(K) = 0).

Remark 45. Every K bounds a topologically embedded disc D ↪→ B4: the cone on K: Cone(K).

Definition 46. K is topologically slice if there exists a continuous embedding ϕ : (D2 ×

D2, ∂D2×D2)→ (D4, ∂D4 = S3) such that ϕ(∂D2×0) = K. ϕ(D2×0) is some D ⊂ B4, ∂D = K.

D has a “flat neighbrohood” which is kind of like a tubular neighborhood, topologically.

Now comes the “black box:”

Theorem 46. (Freedman) If K satisfies ∆k(t) = 1 (the Alexander polynomial of K is 1), then K

is topologically slice.

Example 52. The Whitehead double Wh(K) of any knot K. Wh(K) is: take K and a translate

of K (0-framing) called K ′ with lk(K,K ′) = 0. This is a link, but somewhere replace this with

a clasp. See Figure 35. we don’t want to simply join them together because we want the linking

number to be 0, hence the twists. As an exercise, ∆Wh(K) = 1 for any K. s(Wh(T2,3)) = 2 implies

that Wh(T2,3) is top slice, not smoothly slice. Thus |s| ≤ 2gs (s is an obstruction to slice-ness).

Remark 46. s(Wh(m(T2,3))) = 0 where the mirror yields the left-handed Trefoil. It is unknown

if Wh(m(T2,3)) is slice or not. All the invariants that would obstruct slice-ness vanish, and we

know it’s topologically slice. It’s known that the Whitehead doubles of all positive torus knots are

not slice.
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Figure 35: The Whitehead double of the trefoil T2,3.
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• Step 2: The Trace Embedding Lemma.

Proposition 7. (Trace Embedding Lemma) K ⊂ S3 is slice if and only if X0(K) embeds smoothly

in S4, where

Definition 47. X0(K) is the “trace of the 0-surgery on K”, namely the a 0-handle union a

cobordism from S3 to S3
0(K) (the 0-surgery on K), given by attaching a 2-handle along K of

framing 0. ∂X0(K) = S2
0(K).

Example 53. If K is the unknot, S3
0(K) = S1 × S2, X0(K) = (D2 × S2).

Proof. The forward direction first: If K is slice, then K = ∂D,D ⊂ B4, then S4 = X0(K)∪ (B4−

nbhd(D)). We get that X0(K) embeds into S4.

Conversely (slightly more tricky): Construct an embedding of F : S2 → X0(K). F = (cone) ∪

(disc). This is smooth away from p, the point of the cone. Suppose we have i : X(K) ↪→ S4

a smooth embedding. Then i ◦ F : S2 ↪→ S4 is an embedding, smooth away from p. Take

Sε(p), Sε(p) ∩ (i ◦ F (S2)) = K, because a neighborhood on p looks locally like a cone on K. We

get that there exists a smoothly embedded disc D ⊂ S4 − Sε(p) = B4, ∂D = K, so K is slice.

Similarly, we can prove another proposition:

Proposition 8. K is topologically slice if and only if there exists a flat embedding of X0(K) ↪→ S4

(a topological embedding with a collar neighborhood).

• Proof of the existance of exotic R4.

Let K be a topolically slice knot that isn’t slice. S4 = B4∪B4 = X0(B4)∪(B4−nbhd(D)) where D

is a topologically flat disc with ∂D = K. Let Z = S4−{x}− int(X0(K)) = R4− int(X0(K)). This

is an open (non-compact) topological 4-manifold with boundary. A theorem of Freedman says that

open 4-manifolds admit smooth structures. (He managed to get a smooth structure everywhere

except for one point on a closed 4-manifold. That point “just goes crazy” - Manolescu, 2020).

Let’s give Z a smooth structure. ∂Z is homeomorphic (and hence diffeomorphic to S3
0(K). The

smooth structure on Z is not the one coming from its embedding in B4! (because our disc is not

smoothly embedding). We get a diffeomorphism ϕ : ∂Z → S3
0(K). This is because in dimension 3

homeomorphism implies diffeomorphism. This is a hard theorem from the 1950s by Moisin(?). Let

R = Z∪ϕX0(K). Each piece is smooth, and they’re glued in a smooth way. But if we glue them in

a smooth way, we get a smooth manifold, homeomorphic to R4 (show it’s homotopy equivalent, i.e.
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contractible, and this follows from Mayer-Vietoris and Seifert-Van Kampen). So we get a manifold

homeomorphic to R4. The point is that X0(K) embeds smoothly in R. We also know that K is

not slice, so K does not embed smoothly into ordinary R4 by the Trace Embedding Lemma. This

shows that R is not diffeomorphic to R4, so R is an exotic R4.

Can Khovanov homology also help us detect exotic closed 4-manifolds? We also have the

Smooth Poincaré Conjecture in dimension 4 (SPC4):

Conjecture 5. If X4 is homotopy equivalente (hence homeomorphic by Freedman) to S4, then it

is diffeomorphic to S4.

We have an equivalent formulation: W 4-smooth with ∂W = S3, and W is contractible i.e.

homotopy equivalent to B4, then W is diffeomorphic to B4. This is equivalent because we can

take X →W = X −B4, and W → X = W ∪S3 B4.

The strategy for disproving SPC4 (suggested by Freedman-Gompf-Morrison-Walker, 2009):

Find a knot K ⊂ S3 such that K bounds a smooth disc D in a contractible W with ∂W = S3.

but s(K) 6= 0 (hence K is not slice, so W 6= B4, so W is an exotic B4.

Remark 47. There exists potential counter examples to SPC4 (e.g. Gluck twists on S4), X ' S4,

take W = X − B4. Assume W has a Kirby diagram (or, better said, handle decomposition) with

no 3-handles. Turn X upside down (map n-handles to (4 − n)-handles. So the attaching circles

for 2-handles are knots⊂ S3, and bound smooth discs in W (cores of the 2-handles). So far, all K

coming from this gave s(K) = 0.

Remark 48. There are invariants similar to s coming from Seiberg-Witten theory, Yang-Mills

theory, Heegaard Floer theory, but they cannot tell the difference between slice-ness in B4 and

slice-ness in a homotopy ball B4.

An open question is: If K ⊂ S3 = ∂W 4, W smooth and contractible, and Σ ↪→W smooth and

proper, with ∂Σ = K, do we have |s(K)| ≤ 2g(Σ)? We know it’s true for W = B4. If it’s true in

general, then the FGMW strategy fails.

15.3 The Freedman-Gompf-Morrison-Walker Strategy Fails for Gluck

Twists

Theorem 47. (Manolescu-Marengon-Sarkar-Willis, 2019) If K ⊂ S3 = ∂W , W a Gluck twist on

B4, and a smoothly and properly embedded surface Σ ↪→W,∂Σ = K, then |s(k)| ≤ 2g(Σ).
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Corollary 16. The FGMW strategy (find a knot that bounds a disc in a homotopy B4 but not in

B4 because s 6= 0) for disproving SPC4 fails for Gluck twists.

Definition 48. For Σ ∼= S2,Σ ↪→ S4, GΣ is a Gluck twist on Σ homotopy equivalent to S4, but it

is not known if it is diffeomorphic to S4. For N a neighborhood of Σ ∼= D2 × S2, with

ϕ : ∂N → ∂N (312)

(eiθ, z) = (eiθ, rotθ(z)) (313)

we have GΣ = (S4 −N) ∪ϕ N is a Gluck twist.

Remark 49. ϕ is the generator of π1(S)(3)) = π1(RP 3) = {S1 → Rot(S2)} = Z2. If ψ(eiθ, z) =

(eiθ, rotθ(z)), then ψ ∼ ϕ implies GΣ = (S4 −N) ∪ψ N .

To represent a Gluck twist in Kirby diagrams, choose a Morse function f : S4 → R, N =

f−1(−∞, 0]. Let h : S2 → R is the standard height function, and π : N ∼= S2 ×D2 → S2 be the

projection map. Let fN = h ◦ π+ |z|2, where |z| is the norm in D2. Then a Kirby diagram for S4,

where Σ comes from a 0-framed 2-handle, and then other handles are attached.

Remark 50. The 1-handles can be assumed to be away from Σ.

[Σ] · [Σ] = 0 because H2(S4) = 0. From ϕ(eiθ, z) = (eiθ, rotθ(z)), the strands passing through

the disc are rotated. Thus a Kirby diagram for GΣ is a full ±1 twist for all strands passing through

the disc.

Proposition 9. GΣ#CP 2 ∼= CP 2 and GΣ#CP 2 ∼= CP 2 (diffeomorphic).

Recall that we can pass strands inside a disjoint 1-framed disc by giving a full twist of the

strands through the disc (see handleslides).

Proof. GΣ#CP 2: see Figure 36. For GΣ#CP 2 ∼= CP 2, we do the same thing but with a +1 twist

instead of a -1 twist.

Theorem 48. (Manolescu-Marengon-Sankar-Willis 2, 2019) For W = CP 2 − B4, K ⊂ ∂W =

S3, with smoothly and properly embedded surface Σ ⊂ W , ∂Σ = K, [Σ] = 0 ∈ H2(W,∂W ) =

H2(CP 2) = Z. Then the Rasmussen invariant s(K) ≤ 2g(Σ.

Proof. See Figure 37. For N a neighborhood of CP 1, ∂N = S3 π−→ S2 = CP 1 is the Hopf fibration.
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Figure 36: GΣ#CP 2 Kirby diagram sequence.
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Figure 37: Manolescu-Marengon-Sankar-Willis 2, 2019
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CP 1 = N ∪ (S3 × [0, 1]) ∪B4. [Σ] · [CP 1] = 0. Say Σ t CP 1 in 2p points. Then Σ ∩N is a union

of 2p discs, and Σ ∩ ∂N is a union of 2p circles, which are the fibers on the Hopf fibration. These

are Lp,p ⊂ S3, the torus link T2p,2p with p strands oriented one way, and p oriented the other

way. One can define Rasmussen’s s invariant for links dimLee(L) = 2l, l = # of components. For

Kh(L)→ Lee(L), there exists canonical generators sσ, sσ, where σ is the orientation of L. Let

s(L) =
q([sσ + sσ]) + q([sσ − sσ])

2
∈ Z (314)

We have a cobordism in S3 × [0, 1] from K to Lp,p of genus g(Σ). Functoriality under cobordisms

(as in Rasmussen’s proof of the Milnor Conjecture) gives s(K)− 2g(Σ) + 1− 2p ≤ s(Lp,p). Then

we calculate that s(Lp,p = 1− 2p, adn then s(K) ≤ 2g(Σ).

Remark 51. We could study the behavior of s with respect to surfaces in any 4-manifold made of

2-handles if we could compute s of the cables (parallel families) of the link of attaching circles for

2-handles.

Theorem 49. Take the same hypothesis of Manolescu-Marengon-Sankar-Willis - 2, but with CP 2

instead of CP 2; then we get −s(K) ≤ 2g(Σ).

Proof. Apply Manolescu-Marengon-Sankar-Willis - 2 tom(K), which bounds Σ in CP 2; s(m(k)) =

−s(K).

This theorem and Manolescu-Marengon-Sankar-Willis - 2 and the proposition that Gluck twists

trivialize when connected-summed to CP 2 or CP 2. These imply the first theorem by Manolescu-

Marengon-Sankar-Willis. W is a Bluck twist on B4, Σ ⊂W,∂Σ = K. Then W = GS −B4, where

S is a surface in S4. GS#CP 2 = CP 2 implies W#CP 2 = (CP 2 − B4), GS#CP 2 = CP 2 implies

W#CP 2−(CP 2−B4). From Theorem 2 we get s(K) ≤ 2g(Σ) (in CP 2, and from the last theorem

−s(K) ≤ 2g(Σ) (in CP 2. Therefore |s(K)| ≤ 2g(Σ). (Note that [Σ] = 0 because H2(W ) = 0).

Any remaining hope for disproving SPC4 using the FGMW strategy?

Proposition 10. Suppose we had two knots K,K ′ with S3
0(K) ∼= S3

0(K ′) with K slice and K ′-not

slice, because s(K ′) 6= 0. Then SPC4 is false.

If S3
0(K) is the result of 0-surgery, and a Kirby diagram represents the 4-manifold X0(K) “trace

of the 0-surgery” then ∂X0(K) = S3
0(K).
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Example 54. For K the unknot u, S3
0(u) = S1 × S2, and X0(u) = D2 × S2

Proof. If K is slice then there exists a disc D ↪→smooth B
4, ∂D = K. Then X0(K) with B4 −

nbhd(D) yields S4. This is called the “trace embedding.” We know that ∂X0(X) = S3
0(K) =

S3
0(K ′) = ∂X0(K ′). Then we replace the union to S4 by X := X0(K ′) ∪ (B4 − nbhd(K)) ∼ S4.

This is homotopy equivalent, and hence by Freedman homeomorphic to S4.

Lemma 9. (Trace Embedding Lemma) For K ′ not slice, X0(K ′) cannot be smoothly embedded in

S4. However, X0(K ′) ↪→smooth X. Then X is not diffeomorphic to S4.

Additional reading: (one of the most exciting results of Khovanov homology) Proof of the Thom

Conjecture without gauge thoery (Lambert-Cole, 2018).

Conjecture 6. (Thom) Σ ⊂ CP 2 smoothly, with [Σ] = d[CP 1] ∈ H2(CP 2;Z). Then g(Σ) ≥

1
2 (d− 1)(d− 2).

This was first proved by Kronheimer-Mrowka using Seiberg-Witten theory. The ingredients in

Lambert-Cole’s proof are:

1. Trisections: choose a trisection of CP 2 for which Σ is in “bridge position.”

2. Contact geometry: make Σ ∩ Yi (in the trisection) be transverse to the standard contact

structure in #k(S1 × S2).

3. Khovanov homology: the slice-Bennequin inequality for transverse knots, which can be proved

using Kh. In fact it is equivalent to Milnor’s Conjecture for torus knots.
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