
Math 283 Problems

Alec Lau

Problems assigned by Prof. Ciprian Manolescu for a course on the topology of 4-manifolds.

Question 1. Let P be a presentation of a group with l generators and m relations. Let XP be the

four-manifold obtained from #l(S1×S3) by doing surgery along loops that represent the relations.

Calculate the Euler characteristic of XP in terms of l and m.

Proof. The Euler characteristic is given, for finite CW -complexes such as these, as the alternating

sum

χ = k0 − k1 + k2 − ... (1)

where kn is the number of cells in the complex. A cellular decomposition of Sn is a single 0-cell and

a single n-cell. Thus χ(S1) = χ(S3) = 0. The Euler characteristic of (S1 × S3) is then 0× 0. For

an l-fold connected sum N := (S1×S3)#...#(S1×S3), we remove a 4-ball from each manifold and

glue along the boundary, S3. Thus for each connected sum we remove 2 4-cells, add the resulting

Euler characteristics, and subtract that of their intersection, S3. Thus, since we have (l− 1) sums,

we have

χ(N) = (l − 1)χ((S1 × S3)−B4)− (l − 1)χ(S3) (2)

= (l − 1)[χ(S1 × S3)− 2χ(B4)]− (l − 1) · 0 (3)

= (l − 1)[0− 2] (4)

= 2− 2l (5)

Thus χ(N) = 2− 2l.

For each relation, we perform a surgery:

(#l(S1 × S3)− (S1 ×B3)) ∪S1×S2 (B2 × S2) (6)

Thus for each relation we excise out S1×B3 and glue in B2×S2, so we subtract m ·χ(S1×B3) and

add m ·χ(B2×S2). We have χ(S1) = 0, so χ(S1×B3) = χ(S1×S2) = 0. We have χ(S2) = 2 and
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χ(B2) = +k2 = 1, so χ(S2 ×B2) = 2, so we add 2m to the Euler characteristic of XP . Therefore

χ(XP ) = 2− 2l + 2m.

Question 2. Let X be a compact topological 4-manifold with possibly nonempty boundary ∂X.

Suppose that X is oriented, and therefore it has a fundamental class [X] ∈ H4(X, ∂X). Consider

the symmetric bilinear form

Q : H2(X, ∂X;Z)⊗H2(X, ∂X;Z)→ Z, Q(a, b) = 〈a ^ b, [X]〉 (7)

Prove that Q is nondegenerate (det(Q) 6=0) if and only if ∂X is a rational homology sphere, i.e.

H(∂X;Q) ∼= H(S3;Q).

Proof. Notice that the cup product is Poincaré dual to the intersection product. If i∗ : H2(∂X;Q)→

H2(X;Q) is the induced homomorphism given by the inclusion, notice that [i∗(α)]∗ ^ [β] = 0, for

α ∈ H2(∂X;Q), β ∈ H2(X;Q). This is because the cup product is Poincaré Dual to intersections,

so either the singular chain β does not intersect with that of i∗(α), or β ∈ H2(∂X), in which case

[i∗(α)]∗ ^ [β] = 0 ∈ H4(∂X;Q) = 0. Since the map i∗ must always be the trivial map, the only

way the pairing [α]∗ ^ [β]∗ can be nondegenerate is if H2(∂X;Q) = 0. Since ∂X is a boundary

itself, and since X is compact orientable, ∂X is closed and orientable, and so we can apply Poincaré

Duality. Thus H0(∂X;Q) ∼= H3(∂X;Q) ∼= Q, H1(∂Z;Q) ∼= H2(∂X;Q) ∼= 0, so ∂X is a rational

homology sphere.

If ∂X is a rational homology sphere, then we have the exact sequence

...→ H1(∂X;Q)→ H2(X, ∂X;Q)→ H2(X;Q)→ H2(∂X;Q)→ ... (8)

...→ 0→ H2(X, ∂;Q)→ H2(X;Q)→ 0→ ... (9)

And therefore H2(X, ∂X;Q) ∼= H2(X;Q), for any coefficients. Thus we have a nondegenerate

pairing due to Poincaré Duality given by 〈a ^ b, α〉 → Q, for α ∈ H4(X;Q) ∼= Q. Thus Q is

nondegenerate.

Question 3. An n-knot is the image of a smooth embedding f : Sn ↪→ Sn+2. Given a 1-knot

K ⊂ S3, we can construct a 2-knot ΣK ⊂ S4, called the spun knot of K, as follows. Around a
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point p ∈ K, choose a small ball U = B3(p, ε) ⊂ S3 such that K intersects U in a standardly

embedded interval I ⊂ U . Let B = S3\U and β = K\I ⊂ B. (Thus, β is a “knotted arc” in the

three-dimensional ball B.) Identify S4 with the result of gluing

(∂B ×D2) ∪∂B×S1 (B1 × S1) (10)

and let

ΣK = (∂β ×D2) ∪∂β×S1 (β × S1) ⊂ S4 (11)

1. Prove that π1(S4\ΣK) is isomorphic to π1(S3\K)

2. Consider the torus knot Tp,q ⊂ S3 obtained by taking a standard embedding of T 2 in S3 and

pre-composing it with the map ψ : S1 → T 2, ψ(x) = (px, qx), where we identified S1 ∼= RZ

and T 2 ∼= R2/Z2. Calculate π1(S3\Tp,q).

3. Conclude that there is no diffeomorphism F : S4 → S4 taking the standard sphere S2 ⊂ S4

into the spun trefoil ΣT3,2 .

Proof. 1. We have S4\ΣK as

((∂B\∂β)×D2) ∪∂B\∂β×S1 ((B\β)× S1) (12)

Notice that ∂B = S2, ∂β = S0. Thus ∂B\∂β = S1, so we get

S4\ΣK = (S1 ×D2) ∪S1×S1 (B\β × S1) (13)

From the Seifert-Van-Kampen Theorem we compute the fundamental group as

π1(S4\ΣK) ∼= (π1(S1 ×D2) ∗ π1(B\β × S1))/π1(S1 × S1) (14)

∼= (π1(S1)× π1(D2)) ∗ (π1(B/β)× π1(S1))/(π1(S1)× π1(S1)) (15)

∼= (Z× 1) ∗ (π1(B\β)× Z)/Z× Z (16)

∼= π1(B\β) (17)
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B\β can be thought of R3 with β glued to two holes in S2 removed, because β is compact

and its boundary is that of the removed twice-punctured sphere. Compressing this S2, we

find that B\β is homotopy equivalent to R3\K, as the sphere simply connected the loop of

the gap left behind by β. Since they are homotopy equivalent, π1(S4\ΣK) ∼= π1(S3\K)

2. Since T 2 is compact, and we can consider R3\Tp,q under the identification S3 = R3 ∪ {}.

The graph ψ(x) = (px, qx) ⊂ R2 before quotienting by Z2 can be thought of as a line

segment from (0,0) to (p, q). If this segment intersects Z2 n times before it ends (before

x < 1), then we get the wedge sum of (n + 1) torus knots Tp,q. We henceforth assume

p, q are coprime. Under the quotient (px, qx) ∈ R × R/Z, x ∈ [0, 1], we have q loops (to

avoid confusion, we’ll call these loopty-loops). Each loopty-loop corresponds to an element

in π1(S3\Tp,q) ∼= π1(R3\Tp,q), when a loop is made from a path from the basepoint through

this loopty-loop. Since each such loop can be homotoped around the loopty-loop to another

loopty-loop, this subgroup of loopty-loops under the quotient of this factor is singly-generated.

After q of these loops, we arrive back at the origin. We can do the same by quotienting out

the first factor: (px, qx) ∈ R/Z × R. After p of these loops, we arrive back at the origin as

well. Thus π1(R3\Tp,q) has two generators a, b such that ap = bq, and in general (for p, q not

necessarily coprime) π1(S3\T p,q)=〈a1,b1,...,ak,bk|api =bqi∀1≤i≤k〉 where k is the common factor of

p and q.

3. The standard sphere is the spun knot of the unknot, which has π1(S3\K) ∼= π1(R3\S1) ∼= Z.

This is not isomorphic to π1(S4\ΣT3,2
) ∼= π1(S3\T3,2) ∼= 〈a, b|a3 = b2〉, because, for instance,

the latter is not abelian.

Question 4. Let Σ ⊂ S4 be a 2-knot. For any θ ∈ [0, 2π], let rθ : S2 → S2 be the rotation by angle

θ about a fixed axis. Take a tubular neighborhood of Σ of the form V ∼== S2 ×D2 and re-glue it

by the diffeomorphism

ϕ : S2 × S1 → S2 × S1, ϕ(x, θ) = (rθ(x), θ), (18)
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where we identified S1 ∼= R/2πZ. We obtain a four-manifold

GΣ = (S4\V ) ∪∂V (S2 ×D2), (19)

where the boundaries are identified via the map ϕ. This is called the Gluck twist of S4 along Σ.

Prove that if Σ is the standard sphere S2 ⊂ S4, then GΣ is diffeomorphic to S4.

Proof. We have

GΣ = (S4\V ) ∪∂V (S2 ×D2) (20)

Identify S4 = ∂D5 = ∂(D3 ×D2) = ∂D3 ×D2 ∪S2×S1 D3 × ∂D2 = S2 ×D2 ∪S2×S1 D3 × S1. We

give charts (ψi(x
′
1, x
′
2, x
′
3), ϕi(x

′
4, x
′
5)), and our diffeomorphism is given by f(x1, x2, x3, x4, x5) =

(r(x2
1+x2

2+x2
3)θ, cos((x2

4+x2
5)θ), sin((x2

4+x2
5)θ)). This results in GΣ, and is a diffeomorphism, because

f is composed of trigonometric functions with polynomial arguments. These are both smooth, and

rθ and θ are both bijective. Dfx is a block-diagonal matrix with the first block the differential

of a 3d rotation matrix and 2nd block that of a 2d rotation matrix. Thus GΣ is diffeomorphic to

S4.

Question 5. For n ≥ 1, prove that the positive definite forms Q1 = E8⊕n〈1〉 and Q2 = (8+n)〈1〉

are not equivalent over Z, even though they have equal rank, signature and parity. (Hint: Count

the number of vectors of length 1.)

Proof. We can easily see that Q2 has 8+n vectors of length 1, the ei, 1 ≤ i ≤ 8+n. Now we count

vectors of length 1 in Q1. We already have n by the same logic, so we need to count the number of

vectors of length 1 for E8. Splitting up E8 into two index-shifting matrices, 2 ∗ Id, and one more

extra matrix, we get the length from Q1 of a vector with entries ai ∈ Z such that

8∑
i=1

2a2
i +

6∑
i=1

2aiai+1 + 2a2
5 = 1 (21)

This, however, is impossible for ai ∈ Z, because we can simply divide each side by 2, and we get

a sum of multiples of integers supposed to equal 1
2 . Thus, no matter how we change bases, we

cannot get 8 + n vectors of length 1 from Q1, so Q1 6= Q2.
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Question 6. Let P (d) denote the vector space of all homogeneous polynomials in C[z0, z1, z2, z3]

of degree d ≥ 1. For f = f(z0, ..., z3) ∈ P (d), let

Z(f) = {[z0 : z1 : z2 : z3] ∈ CP 3|f(z0, z1, z2, z3) = 0} (22)

be the zero set of f .

1. Calculate the dimension of P (d) as a vector space.

2. Consider the set

Z = {(z, f) ∈ CP 3 × P (d)|f(z) = 0}. (23)

Show that Z is a submanifold of CP 3 × P (d).

3. Consider the map p : Z → P (d) given by composing the inclusion of Z in CP 3 × P (d) with

projection to the second factor. Show that f ∈ P (d) is a regular value of p if and only if the

complex valued functions

f,
∂f

∂z0
,
∂f

∂z1
,
∂f

∂z2
,
∂f

∂z3
(24)

have no common zero in C4\{0}.

4. Prove that the set U(d) ⊂ P (d) of regular values of p is connected.

5. Deduce that for f ∈ U(d), the zero set Z(f) is a smooth four-dimensional manifold whose

diffeomorphism type is independent of f . We let Zd denote any manifold of the form Z(f)

for f ∈ U(d).

Proof. 1. For our vector space, our ground field is C, with basis vectors all possible words of

z0, ..., z3 of d characters (because our polynomials are homogeneous), independent of order

(this is because, in adding a single degree, we have 4 choices for which variable we multiply

this “basis vector” by). We allow repeats of variables, and we need to choose 4 variables from

a certain number of variables, so we have 4 choose d with repetition, i.e. h := dim(P (d)) =(
4+d−1
d

)
.
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2. Notice that, for f ∈ P (d), if f(z) = 0, then λf(z) = 0,∀λ ∈ C, so the f ∈ P (d) such that

f(z) = 0 form a subspace of the vector space P (d). Since P (d) is a 4d-dimensional complex

vector space, it is isomorphic to C4n, and similarly such f(z) ∈ P (d) are isomorphic to a

subspace of C4n, and thus a submanifold of C4n. Now choose some f ∈ P (d). Since f is a

homogeneous polynomial, the Jacobian matrix is

[
∂f

∂z0
,
∂f

∂z1
,
∂f

∂z2
,
∂f

∂z3
] (25)

has full rank at every point except (0, ..., 0), which is not in CP 3. This is because each ∂f
∂zi

consists of terms with z0 or d − 1 factors of other zis. By the Preimage theorem the zero

locus of f is then a submanifold of CP 3. With the product topology, Z is then a submanifold

of CP 3 × P (d).

3. We examine the Jacobian of the projection, since the Jacobian of the inclusion map is the

identity:


∂f1
∂z0

... ∂f1
∂z3

∂f1
∂v1

... ∂f1
∂vh

...
. . .

...
...

. . .
...

∂fh
∂z0

... ∂fh
∂z3

∂fh
∂v1

... ∂fh
∂vh

 (26)

where vi denotes an ordered basis of P (d), if you want via the natural isomorphism from

P (d) to Ch mapping monomials to basis vectors, where we recall h =
(

4+d−1
d

)
, and fi is

f ’s monomial term corresponding to the monomial vi. Notice that the last h columns are

diagonal with entries the coefficients of our monomials. If f is zero at a particular point, then

since it is in Z, we showed above that the first four columns must have full rank. Furthermore,

if ∂f
∂zi

= 0 at a particular point, then the other columns in the first four columns are not all

zero if and only if not all columns are multiples of each other. Therefore this matrix has full

rank if and only if f and all its partial derivatives do not have a shared zero, and therefore

f is a regular value with this same condition.

4. If the above conditions fail, the premise of the Implicit function theorem is violated, and all

g /∈ U(d) give points g−1(0) of codimension 1, as they are described by equations. Therefore,
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for f ∈ U(d), the hypersurfaces described by f−1(0)s form a connected subset, because p is

continuous.

5. Because U(d) is connected, the hypersurface f−1(0) describes points that can be smoothly

deformed into any other smooth hypersurface, via. Since this has codimension 1 in C, it has

real dimension 4. *NOTE* According to Ciprian this uses Ehresmann’s Fibration Theorem.

Question 7. Given homogeneous polynomials pi of degree di in n+1 variables, for i = 1, ..., n−2,

let

S = S(d1, ..., dn−2) = {[z0 : z1 : ... : zn] ∈ CPn|pi(z0, ..., zn) = 0,∀i} (27)

The subset S is a smooth, simply connected, four-dimensional submanifold of CPn whose diffeo-

morphism type only depends on di. The manifold S is called the complete intersection surface of

multidegree (d1, ..., dn−2).

1. Compute the characteristic numbers c2(TS)[S] and c1(TS)2[S].

2. Compute the Euler characteristic and signature of S.

3. Show that S is spin if and only if di − (n+ 1) is even.

Proof. 1. For the inclusion i : S → CPn, denote x by the pullback i∗(ω) ∈ H2(S;Z) of ω =

PD([CPn−1]) ∈ H2(CPn;Z). We proceed as in class. We have

TCPn|S = TS ⊕ νS (28)

By the Whitney product formula we have

c(TCPn|S) = c(TS)c(νS) (29)

(1 + x)n+1 = (1 + c1(TS) + c2(TS))(1 + c1(νS) + c2(νS)) (30)

since rank(TS) = 2, dim(S) = 4. We can easily expand this, because x, c1 ∈ H2(S;Z), c2 ∈
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H4(S;Z). Thus we get

[

n+1∑
k=0

(
n+ 1

k

)
xk](1 + c1(νS) + c2(νS))−1 = 1 + c1(TS) + c2(TS) (31)

[1 + (n+ 1)x+
n(n+ 1)

2
x2](1− c1(νS) + c21(νS)− c2(νS)) = 1 + c1(TS) + c2(TS) (32)

To find ci(TS), we check which terms are in H2i(S;Z). Thus we have

n(n+ 1)

2
x2 − (n+ 1)xc1(νS)− c2(νS) + c21(νS) = c2(TS) (33)

(n+ 1)x− c1(νS) = c1(TS) (34)

We now need to find c1(νS). Since S is a manifold, all Sdi intersect transversely. Thus

the Sdi ∩ S is transverse, so we can think of each Sdi being a section of νS. Thus Sdi ∩ S

is a manifold of the zero section of a line bundle Li. We then have c1(Li) = PD([Sdi ∩

S]). This is equal to i∗(PD([Sdi ])) Since [Sdi ] = di[S1] ∈ Hn−2(CPn;Z) (we showed in

the last homework that the diffeomorphism type only depends on d), we have c1(Li) =

dii
∗(PD([S1])) = dii

∗(ω) = dix.

Thus we have νS = L1 ⊕ ...⊕ Ln−2, and, by the Whitney product formula, we have

c(νS) =
n−2∏
i=1

(1 + dix) (35)

Looking at the terms of the above product that contain only one x gives us c1(νS), and the

terms with x2 give us c2(νS). Expanding the sum gives us

c1(νS) = x

n−2∑
i

di (36)

c2(νS) = x2
∑
i<j

didj (37)
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Therefore we have

c1(TS) = (n+ 1)x− x
n−2∑
i

di (38)

c2(TS) =
n(n+ 1)

2
x2 − (n+ 1)x2

n−2∑
i

di − x2
∑
i<j

didj + (x

n−2∑
i

di)
2 (39)

= (
n(n+ 1)

2
− (n+ 1)

n−2∑
i

di −
∑
i<j

didj + (

n−2∑
i

di)
2)x2 (40)

c21(TS) = ((n+ 1)−
n−2∑
i

di)
2x2 (41)

we now compute x2. We have

〈x2, [S]〉 = 〈(i∗1(...i∗n−2(g)...))2, [S]〉 (42)

= 〈g2, in−2,∗(...i1,∗([S])...)〉 (43)

= 〈g2 ∪ PD(in−2,∗(...i1,∗([S])...)), [CP 3]〉 (44)

= 〈g2 ∪
∏

dig, [CP 3]〉 (45)

=
∏

di〈g3, [CP 3]〉 (46)

=
∏

di (47)

Thus we have c21(TS) = ((n + 1) −
∑n−2
i di)

2
∏
di, c2[S] = (n(n+1)

2 − (n + 1)
∑n−2
i di −∑

i<j didj + (
∑n−2
i di)

2)
∏
di.

2. Since e(TS) = cr/2(TS) = c2(TS), we have

e(TS) = (
n(n+ 1)

2
− (n+ 1)

n−2∑
i

di −
∑
i<j

didj + (

n−2∑
i

di)
2)x2 (48)
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Since p1 = c21 − 2c2, σ(S) = 1
3p1, and χ(S) = e(TS), we have

σ(S) =
1

3
c21 −

2

3
c2 (49)

=
1

3
((n+ 1)−

n−2∑
i

di)
2x2 − 2

3
(
n(n+ 1)

2
− (n+ 1)

n−2∑
i

di −
∑
i<j

didj + (

n−2∑
i

di)
2)x2

(50)

=
x2

3
((n+ 1)2 − 2(n+ 1)

n−2∑
i

di + (

n−2∑
i

di)
2) (51)

− n(n+ 1)− 2(n+ 1)

n−2∑
i

di −
∑
i<j

didj + (

n−2∑
i

di)
2) (52)

=
x2

3
((n+ 1)− (

n−2∑
i

di)
2 + 2

∑
i<j

didj) (53)

=
x2

3
((n+ 1)−

n−2∑
i

d2
i ) (54)

=
∏

di
1

3
((n+ 1)−

n−2∑
i

d2
i ) (55)

3. w2(TS) = 0 if and only if S is spin, so since π1(S) = 1, c1(TS) ≡ w2(TS) mod 2. Thus

c1(TS) ≡ 0 mod 2 if and only if S is spin, so S is spin if and only if (n+ 1)−
∑
i di is even.

Question 8. An Enriques surface X is the quotient of a K3 surface by a free involution. Note

that π1(X) = Z/2. Calculate the Euler characteristic and the signature of X, and from here find

its intersection form.

Proof. A K3 surface is the double-cover of an Enriques surface, so we divide σ(K3), χ(K3) by 2.

From class, we have the following for hypersurfaces:

σ =
d(4− d2)

3
, χ = d(d2 − 4d+ 6) (56)

For a K3 surface this yields σ(K3) = −16, χ(K3) = 24. Thus for an Enriques surface we have

σ = −8, χ = 12. Since 2 + rk(Q) = χ = 12, we have rk(Q) = 10. Since rk(Q) 6= σ, Q is indefinite,

and thus Q = −E8 ⊕H.

Question 9. Let X be a four-manifold with a (g, k)-trisection. Calculate the Euler characteristic
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of X in terms of g and k.

Proof. The Euler characteristic is the alternating sum of the number of n-cells k0−k1 +k2− .... A

trisection of X is given by X1∪X2∪X3 = X, where Xi = \k(S1×B3), Xi∩Xj = \g(S1×B2), X1∩

X2∩X3 = Σg, a surface of genus g. Notice that Σg can be built by taking the g−fold connected sum

of tori S1×S1. When we take the g-fold connected sum, we subtract 1 pair of 2-cells from the middle

summands and 1 from each end summand, so we have χ(Σg) = gχ(S1 × S1)− 2(g − 1) = 2− 2g.

\α(S1 × Bβ) is a genus (α β + 1)−handlebody. Attaching a β-handle is homotopy equivalent to

attaching a β−cell, so a genus g n-handlebody has Euler characteristic kn+gkn−1 = ±1∓g. Thus

χ(Xi) = (1−k) and χ(Xi∩Xj) = (−1 + g). When we take the union X1∪X2∪X3, we over-count

X1 ∩X2, X2 ∩X3, and X1 ∩X3 each by 1, and over-count X1 ∩X2 ∩X3 by 2. Thus we have

χ(X) = 3χ(\k(S1 ×B3))− 3χ(\6(S1 ×B2))− 2χ(Σg) (57)

= 3(1− k)− 3(−1 + g)− 2(2− 2g) (58)

= 2 + g − 3k (59)

Question 10. Prove using Kirby calculus that the manifolds X1 = CP 2#CP 2#CP 2 and X2 =

(S2 × S2)#CP 2 are diffeomorphic.

Proof. See Figure 1

Question 11. Prove that the boundary of the E8 plumbing is diffeomorphic to the result of +1

surgery on the trefoil, where all components are labeled +1.

Proof. Since CP 2 is closed, we blow up E8, since ∂E8#CP 2 = ∂E8. This allows us to blow down.

See Figure 2 Then we simplify the final diagram in Figure 2 as the blow up of the +1 trefoil knot,

as in Figure 3.

Question 12.

Proof. See Figure 4.

Question 13.
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0 0 -1 0 0 -1

0 0 -1
0 0 -1

0 1 -1 0 1 -1

-1 1 -1 1 -1 -1

Figure 1: Kirby calculus from (S2 × S2)#CP 2 to CP 2#CP 2#CP 2.

Proof. See Figure 5

Question 14. See Figure 6

Question 15. Given a finite presentation of a group G, explain how to construct a Kirby diagram

for a 4-manifold X with π1(X) = G.

Proof. We follow the hint and what was done in class. For l generators, we start with #l(S1×S3).

We attach l 1-handles with 2l 2-spheres in our Kirby diagram for each connected summand. For r

relations, we embed circles by connecting the spheres representing the generators in the characters

in the relation. Since we attach a 2-handle along these circles, we kill the word represented by this

relation. We surger these out to obtain a 4-manifold with boundary (a manifold with 0-handles,

1-handles, and 2-handles). By attaching the 2-handles to this manifold and doubling in order to

connect the circles, we get a Kirby diagram for a manifold X such that π1(X).

Question 16. Let X be a smooth, closed, connected (but not necessarily simply connected) 4-

manifold.
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Figure 2: Kirby calculus on E8#CP 2. (Sorry the font is so small; I couldn’t figure out how to fix
it in time.)

1. Prove that ω2(TX) is the lift of an integral class, i.e. it lives in the image of the natural map

H2(X;Z)→ H2(X;Z/2).

2. Prove that there is a short exact sequence of groups

1→ Z/2→ Spinc(4)→ S1 × SO(4)→ 1. (60)

3. The above sequence induces a long exact sequence on cohomology. Using this, prove that X

admits a Spinc structure.

4. Let (S, γ) be a Spinc structure on X, with determinant line bundle L. Prove that c1(L) ≡

ω2(TX) mod 2, and therefore c1(L) is a characteristic element.

Proof. 1. If TX has an almost-complex structure, V ect(X)
ω2−→ H2(X;Z2) factors through the

map V ect(X)
c1−→ H2(X;Z) giving a total map

TX
c1−→ H2(X;Z)

mod 2−−−−−→ H2(X;Z2) (61)
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Figure 3: Kirby calculus from E8#CP 2 to TH#CP 2

As for the real case: For Q a unimodular symmetric bilinear form defined over a free Z-

module Z, we reduce it by quotienting the ideal 2Z to define Q′ := mod 2. If we take some

integers a, b, we have (a + b)(a + b) = aa + bb mod 2, and is thus Z2-linear. For every

Z2-linear function f , there exists some a such that f(·) = Q′(a, ·). Then there must exist

a characteristic b ∈ Z such that Q′(a, a) = Q′(a, b). Therefore, there must exist an element

b′ ∈ Z such that b′ ≡ b mod 2, so there is always a characteristic element for all a ∈ Z.

Thus we can always find an integral class w′ ∈ H2(M ;Z) such that w′ ≡ w ∈ H2(M ;Z2),

and w must be w2(TM).

2. In dimension 4, spinc(4) = {(A,B) ∈ U(2) × U(2)|det(A) = detB}. This acts on C2 via

(h1, h2) 7→ h1xh
−1
2 , x ∈ C2. We can set A,B such that det(A) = det(B) = 1, and multiply

each by a scaling factor of modulus 1, i.e. eiθ to keep unitarity: det(λA) = λ2 det(A) = λ2.

This mods out the sign of λ. Thus spinc(4) = (SU(2)× SU(2))×Z/2Z S
1, where we identify
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Figure 4: Kirby calculus from the -1 surgery on a trefoil to +1 surgery on the figure 8 knot.

eiθ with S1. We then have a map

R4 → R4 (62)

x 7→ λAx(λB)−1 (63)

spinc → SO(4)× S1 (64)

The kernel of this map, by inspection, is A = B = Id,A = B = −Id, λ = ±1. Thus we have

an exact sequence

1→ Z/2→ spinc → SO(4)× S1 → 1 (65)
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Figure 5: Kirby calculus to CP 2. The text was a lot smaller than I wanted, but we use handle
cancellation to get rid of the 0-circle.

3. The above short exact sequence induces a long exact sequence in cohomology:

0→H1(X;Z2)→ H1(X;Spinc)→ H1(X;SO(4)× S1)
δ−→ (66)

H2(X;Z2)→ H2(X;Spinc)→ H2(X;SO(4)× S1)→ ... (67)

This gives the exact sequence

H1(X;Spinc)→ H1(X;SO(4))⊕H1(X;S1)
ω2⊕c′1−−−−→ H2(X;Z2) (68)

where ω2 is the Stiefel-Whitney class of the principal-SO(4) bundle and c′1 is the mod 2 chern

class of the principal-U(1) bundle. We have that

PrinU(1)X ∼= [X,BU(1)] ∼= PrinGL(1,C) = V ect1(X) ∼= H2(X;Z) (69)
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Figure 6: Unlink the -8 framed 2-handle, and cancel the 1-handle with this 2 framed 2-handle.
After that, cancel the 3-handle with the 0-framed unknot.

Thus we have

H1(X;Spinc)→ H1(X;SO(4))⊕H2(X;Z)
ω2⊕f−−−→ H2(X;Z2) (70)

Since we have ω2(PSO(4)) = f(U(1)) due to part a), we have a Spinc structure

PSpinc → PSO(4) × P (S1)→ X (71)

4. Since X is a 4-manifold, TX is a principal-SO(4) bundle, and so we have the spin structure

PSpinc → PSO(4) ×det PU(1) → X (72)

so, from above, we have c1(L) = ω2(TX) ∈ H2(X;Z2), i.e. c1(L) ≡ ω2(TX) mod 2, and so

c1(L) is a characteristic element.
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Question 17. Show that every closed, oriented 3-manifold admits a Spinc structure.

Proof. We study the tangent bundle of a closed, oriented 3-manifold. Suppose ω2 ∈ H2(X;Z2)

is nonzero. Choose a loop γ in X that is Poincaré dual to ω2. Then there is a spin structure on

X − γ that doesn’t extend over γ. Let Y be a dual surface transverse to γ at a point x. The

normal bundle Y ×D to Y is equal to the total normal bundle of an immersion of Y in R3, so the

Y ×D normal bundle has a spin structure, classified by H1(Y ;Z2) ∼= H1(Y −x;Z2). H1(Y −x;Z2)

classifies spin structures on ((Y − x)×D), which must agree with (Y ×D), so the spin structure

extends across γ, a contradiction. Thus ω2(X) = 0, so X is spin. Since we have

H2(X;Z2)→ H2(PSO(3);Z2)→ H2(SO(3);Z2) (73)

and π2(SO(3)) = 0 and X is orientable, TX is trivial, so X admits a Spinc structure.

Question 18. Let X be a closed, connected, smooth 4-manifold that admits an almost complex

structure.

1. Prove that p1(TX) = c21(TX)− 2c2(TX).

2. Prove that there exists h ∈ H2(X;Z) such that h ≡ ω2(TX) mod 2 and h2[X] = 3σ(X) +

2χ(X), where σ denotes the signature and χ denotes the Euler characteristic.

3. If X is simply connected, prove that that b+2 (X) is odd.

Proof. 1. The kth Pontryagin class for a real vector bundle E is given by

pk(E) = (−1)kc2k(E ⊗R C) ∈ H4(X;Z) (74)

Our almost-complex structure has two eigenvalues: ±i. This gives a decomposition of TX ⊗

C = T+ ⊕ T− into the two corresponding eigenspaces once we have i from ⊗C. Then we

have

p1(TX) = −c2(T+ ⊕ T−) (75)
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To find this, we take the formula

c(T+ ⊕ T−) = c(T+)c(T−) (76)

Since T± are complexified, T+ is isomorphic to TX, and T− is the conjugate bundle TX∗.

Thus we find p1(TX) by grouping the elements of −c(TX)2 in the second homology class.

Since we have ci(TX∗) = (−1)ici(TX), we get

c(TX)2 = (1 + c1(TX) + c2(TX))(1− c1(TX) + c2(TX)) (77)

= 1 + c1 + c2 − c1 − c21 − c1c2 + c2 + c1c2 + c22 ⇒ (78)

c2(TX ⊗ C) = −c21(TX) + 2c2(TX) (79)

Adding in the -1 factor from the Pontryagin formula, we get

p1(TX) = c21(TX)− 2c2(TX) (80)

2. c1 exists as a class h ∈ H2(X;Z) such that h ≡ ω2(TX) mod 2, since ω2k ≡ ck mod 2.

Also, c2(TX) = χ(X), so we have

p1(TX) = h2 − 2χ(X) (81)

By the Hirzebruch Signature theorem, we have

p1(TX)([X]) = 3σ(X) (82)

so we have

3σ(X) = h2([X])− 2χ(X)([X])⇒ (83)

h2([X]) = 3σ(X) + 2χ(X) (84)

3. If X is simply-connected, then χ = 2+ b+2 + b−2 . h = c1 is characteristic. If Q is definite, then
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b−2 = 0. If Q is indefinite, then Q = Q⊕〈1〉⊕〈−1〉, since these have the same rank, signature,

and parity. Then Q = (b+2 + 1)〈1〉 ⊕ (b+2 1)〈−1〉, with h having odd components in this basis,

because it is a characteristic class. Each component can thus be written as (2k + 1), k ∈ Z,

and (2k+ 1)2 = 4k(k+ 1) + 1. Since either k or (k+ 1) is even, each component is congruent

to 1 mod 8. Thus we have Q(h, h) ≡ (b+2 + 1) − (b−2 + 1) = σ mod 8. Therefore h2 ≡ σ

mod 8.

h2 = 2(σ + χ) + σ ⇒ (85)

2(σ + χ) + σ − h2 = 0 (86)

2(σ + χ) ≡ 0 mod 8 (87)

σ + χ ≡ 0 mod 4 (88)

b+2 − b
−
2 + 2 + b+2 b

−
2 ≡ 0 mod 4 (89)

2 + 2b+2 ≡ 0 mod 4 (90)

2b+2 ≡ 2 mod 4 (91)

Therefore b+2 must be (2k + 1), k ∈ Z, i.e. b+2 must be odd.
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