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1 Introduction

Recall that the orientable slice genus of a smooth knot K ⊂ S3 is the least integer g such

that K = ∂Σ ↪→ B4, where Σ is a smoothly and properly embedded orientable surface in B4 of

genus g. There are many ways to bound the orientable slice genus of a given knot. One famous

bound is via the Rasmussen invariant: Lee perturbs the differential on Khovanov homology to

get a filtered chain complex, and the degree of a generator yields Rasmussen’s s invariant. This

invariant of a knot gives the lower bound on the slice genus

|s(K)| ≤ 2gs(K) (1)

Unfortunately, such invariants generalize to nonorientable genus.

Definition 1. Let K be a knot. Let F be a connected, non-orientable surface in B4 with ∂F = K.

Let b1(F ) = dim(H1(F,Q)) be the first Betti number of F . The non-orientable slice genus

γ4(K) of a knot K ⊂ S3 is the minimum b1(F ) over all such F .

This is an important inariant in its own right, as many knots bound non-orientable surfaces.

Example 1. The torus knots T2,n for n odd. See Figure 1. Rasmussen’s invariant is bounded on

this knot.

Non-orientable surfaces have some additional data attached to them, via the normal Euler

number e(F ).
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Definition 2. The normal Euler number e(F ) for a possibly non-orientable surface F is the

self-intersection number of the zero section. For concretely, take a small isotopic displacement of

F̃ in the normal direction of F and count F ∩ F̃ . The sign of an intersection point p ∈ F ∩ F̃ is

positive if (e1, e2, ẽ1, ẽ2 is positively oriented, for ei an arbitrary basis of TF and ẽi their images.

There are numerous bounds on the non-orientable slice genus using e(F ) using the signature of

a knot, Heegaard Floer homology, etc.

Before introducing the specific topic of this paper, we need one more definition:

Definition 3. Two knots K,K ′ are called concordant if K#−K ′ is slice. Equivalently, they are

concordant if ∂(S1 × [0, 1]) = K tK ′. This is the same idea as cobordisms for manifolds.

The topic of this paper is a concordance invariant t(k) introduced by Ballinger ([1]) coming

from Khovanov homology that gives a bound on the non-orientable slice genus. Specifically, the

following theorem:

Theorem 1. (Ballinger) For K a knot in S3,

|t(K) + σ(K)| ≤ 2γ4(K) (2)

2 F3 Khovanov Homology

Recall that, in the proof that Khovanov Homology Kh was link invariant was a Frobenius

algebra. We had: a unit 1 ∈ V for m, ε : V → Z a counit for ∆, with

ε(V+) = 0 (3)

ε(V−) = 1 (4)

so for:

1. m is a commutative, associative multiplication,

2. ∆ a cocommutative, coassociative comultiplication, and

3. the Frobenius law

∆ ◦m = (m⊗ 1) · (1⊗∆) (5)
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Definition 4. Recall that this is called a Frobenius Algebra.

Thus we can have different types of Khovanov homologies for different Frobenius algebras. The

particular Frobenius algebra that is useful for defining t(K) is the F3 Frobenius algebra, instead

of the traditional 2-dimensional version. In computing the F3 Khovanov homology for a knot K,

we do the following:

1. Create the cube of resolutions for K

2. Suppose a particular resolution has n circles. Associate to this resolution the module An =

Z[x1, ..., xn]/(x2
i = x2

j ). Repeat for each resolution.

3. Take the edge maps to be:

• If two circles merge, identify their polynomial variables: An → An/(xi = xj) ∼= An

• If one circle splits, An−1
∼= An/(xi = xj)

xi+xj−−−−→ An

These build our chain complex, the homology groups of which is the Khovanov homology of

the knot we started with.

Remark 1. In F3 Khovanov homology, we can recover other flavors of Khovanov homology: take

a point p on the knot. Let xp act on the polynomial ring by the variable of the circle containing p

at each vertex. Quotienting by x2
p gives standard Khovanov homology, quotienting by x2

p − 1 gives

Lee homology, etc.

3 The Matrix Factorization Picture

For every resolution of the knot, we want to write down a chain complex with homology An.

In order to do this, we remember a little bit more about the original knot than what the resolution

gives us: add a dotted arc where we resolved the crossings for each resolution. See Figure 2. We

can break up this new picture of the knot into these resolved crossing regions, and the rest of

the knot is strands connecting them together. This leads us to the notion of a decorated tangle

diagram:

Definition 5. For a tangle diagram D0, a decorated tangle diagram is a collection of D0 and

any number of dotted arcs meeting D0 only on their boundary, with the requirement that the union

of these and D0 is a connected diagram. Label each region in the complement of this union, and

label them with x1, ..., xn. Near each arc and each crossing (of D0), mark one of the four adjacent

edges in D0. See Figure 3
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We get a polynomial ring in these variables. Z[x1, ..., xn]. We can now introduce the algebraic

framework of this theory:

Definition 6. Let R be a bigraded ring and w ∈ R a homogeneous element of degree (2k, 0), for

k odd. A matrix factorization of w is a bigraded R-module C with an R-linear map d : C → C

that is homogeneous of degree (k, 0), such that d2 = w.

Remark 2. The reason we make k be odd is to avoid adding a Z2 grading to track signs.

Definition 7. Given (R,w) as above, a multifactorization of w is a bigraded R-module C and

a sequence of R-linear homogeneous maps di : C → C of degree (k, i) for i ≥ 0, such that the sum

D =
∑∞

i=0 di satisfies D
2 = w. This multifactorization is denoted (C,D).

Cn,m

Cn+k,m Cn+k,m+1 Cn+k,m+2 ... Cn+k,m+i ...

d0

d1
d2 di

For (C,D) a multifactorization, we notice that (C, d0) is a matrix factorization called the vertical

factorization; see the vertical d0 map in the diagram above.

Given two multifactorizations, we can define a chain map between them:

Definition 8. A chain map between two multifactorizations (C,D) and (C ′, D′) is a map

F that is a sequence of homogeneous R-linear maps fi : C → C ′ of degree (0, i) for i ≥ 0, such

that F =
∑∞

i=0 fi satisfies FD = D′F .

Definition 9. Given a chain map F : (C,D)→ (C ′, D′), a cone is the complex

C(F ) = C(D)[1]⊕ C ′(D′) := ...→ C(D)n ⊕ C ′(D′)n−1 → C(D)n+1 ⊕ C ′(D′)n → ... (6)

We also introduce a useful factorization:

Definition 10. For a bigraded ring R and two homogeneous elements a, b ∈ R of degree 2i, 2j,

respectively, such that ab = w, a length-1 Koszul factorization K(a, b) is a matrix factorization

given by R{i−j, 0} a−→ R
b−→ R{i−j, 0}. For generally, given sequences a = a1, ..., an, b = b1, ..., bn,

a length-n Koszul factorization is given by K(a, b) = ⊗n
i=1K(ai, bi). Note that these are vertical

factorizations.
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We now have the tools to construct our complexes for our knot in this picture. We need a ring

associated to our knot. Let R(D) be the subring generated by all differences xi − xj . If e is an

oriented edge in D0, label the difference xl−xr xe, where xl and xr are the labels of the regions to

the left and right of e, respectively. Now we need a w. Define the w by 1
3

∑
e∈∂D x

3
e. Notice that∑

e∈∂D xe = 0, so the 1
3 factor allows for simplicity while maintaining integer coefficients for w.

Definition 11. The multifactorization C(D) is the matrix factorization of (R(D), w), with w =

1
3

∑
e∈∂D x

3
e.

The four tangle diagrams shown in Figure 3 are a good place to start calculating C(D). R(D)

and w are the same for each one:

R(D) = Z[x0 − x1, x0 − x2, ..., x2 − x3], (7)

w =
1

3
[(x0 − x1)3 + (x1 − x2)3 + (x2 − x3)3 + (x3 − x0)3] (8)

= x0x
2
1 − x2

0x1 + x1x
2
2 − x2

1x2 + x2x
2
3 − x2

2x3 + x3x
2
0 − x2

3x0 (9)

= (x0 − x1)(x2
1 − x2

3)− (x2
0 − x2

2)(x1 − x3) (10)

= (x0 − x2)(x1 − x3)(x1 − x2 + x3 − x0) (11)

For D0, D1 in Figure 3, C(D0) and C(D1) are Koszul factorizations K(x0−x2, (x1−x3)(x1−x2 +

x3 − x0)) and K(x1 − x3, (x0 − x2)(x1 − x2 + x3 − x0)), respectively, with C(D+) and C(D−) the

mapping cones on chain maps between C(D0) and C(D1).

Definition 12. For a general decorated tangle diagram D, an elementary subdiagram of D is

a subdiagram De containing at most one dotted arc or crossing. Modulo relabeling variables, every

elementary subdiagram is equivalent to one of D0, D1, D+, D−.

Using this fact, we can define the total chain complex of a decorated tangle diagram by

C(D) = ⊗De⊂D elementaryC(De)⊗R(De) R(D) (12)

For a knot, this is how we package local matrix factorizations for the individual resolutions into

one double complex that computes the Khovanov homology.

Remark 3. So far we have neglected the use of the marked edges in each arc and crossing. This

is because the marked edge only defines a sign in the differential in C(D). If two diagrams differ

only in marked edges, a diagonal matrix is ±1s on the diagonal corresponding to the differences

defines an isomorphism between the associated Koszul factorizations.
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Remark 4. The reason we’ve only been considering tangles so far is because this allows us to

consider crossings/resolutions without worrying about the connecting strands between these cross-

ings/resolutions; one may wonder why the differential on the C(D) complexes squares to a generally

nonzero element w. When we apply this tensor product, all of the constants cancel out and we get

an honest chain complex.

The edge maps in the Khovanov complex (maps from one resolution to the other at a crossing

site) come from matrix factorization homomorphisms, which we will call saddle maps (see the

bottom of Figure 4). This is completely local, which allows us to prove Reidemeister invariance

on the tangle level. Thus we build a double complex C(K) out of the matrix factorizations of all

resolutions in K:

• The vertical differentials are the matrix factorization differentials

• The horizontal differentials are saddle maps.

Proposition 1. C(K) is a 1-homotopy invariant of K.

The idea of a proof of this is twofold: moving dotted arcs around each other in certain ways and

switching dotted arcs retains the factorization C(K) (See Figure 4), and invariance of Reidemeister

moves.

Proposition 2. If D has no boundary and n closed components, then the homology of C(D) is

isomorphic to Z[x1, ..., xn]/(x2
i − x2

j ){n− 1}, where xi are the variables associated to each edge.

The idea of the proof of this is to move the dotted arcs in a way that retains C(D) to form

a sequence of closed components K1,K2, ...,Kn where the dotted arcs connect Ki to Ki+1. This

allows for R(D) = Z[x1, ..., xn] where xi is associated to an each on Ki. Calculating C(D) yields

the Koszul factorization

K((0, ..., 0), (x2
1 − x2

2, ..., x
2
n−1 − x2

n)) (13)

The homology of this complex is then R(D)/(x2
i − x2

j ). Since x2
i are in the second part of the

Koszul factorization, we need to shift the grading.

Remark 5. This is the module assigned to n circles by F3.

C(K) has a grading q − 3h, where q is the q-grading and h is the homological grading. All of

the differentials lower this grading by 3.
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Remark 6. The homological grading h is just a filtration, because some differentials increase it

by 1, and others don’t change it at all.

Definition 13. When K is a knot, C(K) is a complex over Z[x]. Thus we can form a reduced

complex associated to K, namely C(K) = C(K)/x. We treat C(K) and C(K) as chain com-

plexes with a filtration. The unfiltered complexes are the total complexes, with homology the

total homology.

Suppose two decorated tangle diagrams D,D′ are the same except for some region, where D

has D0 in this region and D′ has D1. Then R(D) = R(D′) and there is a complex Coutside such

that

C(D) = Coutside ⊗R(D) C(D0) (14)

C(D′) = Coutside ⊗R(D) C(D1) (15)

The saddle map here sD→D′ : C(D) → C(D′){1} is the tensor product of the elementary saddle

map sD0→D1
with the identity on Coutside. In addition, it is not hard to prove that C(K t U) ∼=

C(K){−1} ⊕ C(K){1}. With the above saddle map, the inclusion map bK : C(K) → C(K t

U){−1}, and the 2-handle projection map dK : C(K t U)→ C(K){−1}, we have a map

fΣ : C(K)→ C(K ′){−χ(Σ)} (16)

for any cobordism Σ from K to K ′ with a handle decomposition.

Proposition 3. If K,K ′ are knots and Σ has genus g, the map induced by fΣ on total homology

is multiplication by (2x)g. In particular, when Σ is a concordance, fΣ induces an isomorphism on

homology.

The proof of this uses the fact that the map induced by fΣ on total homology is equal up to

sign to the cobordism map from the F3 Frobenius extension.

4 The Invariant t(K)

Definition 14. Let k be a field. t(K) is the largest n for which there is a cycle in C(K) ⊗Z k,

written as a sum of homogeneous elements with filtration grading at least n, generating the total

homology.
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Definition 15. For i ≥ 0, Ti(K) is the largest n for which there is a cycle in C(K) representing

the element (2x)i in the total homology that can be written as a sum of homogeneous elements with

fibration grading at least n.

Proposition 4. If K,K ′ are concordant, then t(K) ∼= t(K ′).

Proof. The idea is to use fΣ for an oriented cobordism Σ from K to K ′. If g is the genus of Σ,

the induced map fΣ : C(K) → C(K ′) is filtered and acts on the total homology by (2x)g. This

sends a cycle γ representing (2x)i in the total homology of C(K) supported in filtration degrees

greater than or equal to Ti(K) to a cycle fΣ(γ) representing (2x)i+g supported in filtration degrees

greater than or equal to Ti(K ′). If g = 0, K and K ′ are concordant. Consider the same bound

from the concordance Σ̃ : K ′ → K. This means that Ti(K) = Ti(K
′), and thus fΣ, fΣ̃ are filtered

isomorphisms C(K)⊗ k ∼= C(K ′)⊗ k, and thus t(K) = t(K ′).

Theorem 2. (Ballinger) |t(K) + σ(K)| ≤ 2γ4(K)

The idea of this proof is to generalize to a possibly non-orientable cobordism F from knot K to

K ′. If such a cobordism F exists with first Betti number b+ 1 and normal Euler number e, then

we have the bound |t(K)− t(K ′)− e/2| ≤ b. This is done by factoring F as a concordance, then b

non-orientable bands of total Euler number e, then another concordance. Since t is concordance-

invariant, we prove the bound when K,K ′ are related by a sequence of b non-orientable bands.

We can do this by just proving this for b = 1 and applying the bands
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Figure 1: T2,n are knots that bound non-orientable surfaces.
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A2 A2A1 A1

Figure 2: Adding dotted arcs to give a chain complex.

Figure 3: The four basic tangles with mark ?. Figure taken from [1].
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Figure 4: From the top: moving dotted arcs around each other, switching dotted arcs, and a saddle
map for a resolution.
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