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1 Introduction

There are many rich frameworks used to describe various exotic regimes like the quantum hall

regime, crystalline solids, topologically ordered phases of matter, and the phase transitions between

them. But all of this progress has been built on two pillars of equilibrium statistical mechanics:

1. Thermalization

2. Phase structure

We assume, when studying phase transitions in the general sense, that the system is in thermal

contact with some kind of bath/reservoir, and the system exchanges heat, particles, etc. with this

bath, and eventually it reaches equilibrium at late times. This state is characterized by a few

variables like temperature, chemical potential, etc. depending on the conservation laws in this

system. Then the properties are developed by analysis of observables or order parameters:

ρeq(T, µ, ...) (1)

〈O〉 = Tr[ρeqO] (2)

The definition of a phase only makes sense in the thermodynamic limit, where we only care about

the asymptotics of millions and millions of particles at late times. The central problem in statistical

mechanics is how to keep track of all of this data. This is where equilibrium statistical mechanics

comes in: a standard assumption of equilibrium statistical mechanics is the ergodic hypothesis,

which states that, in time, all of phase space is explored, so we can replace all of these detailed

equations of motion with macroscopic averages. These macrostates are characterized by a couple

parameters like temperature, chemical potential... to find the equilibrium state, or, if we’re at zero

temperature, the ground state, and then characterize phases and phase transitions by evaluating

correlation functions, order parameters, etc.

One question is what can we say about the dynamics of isolated many-body quantum systems,

where there is no bath. How does such a system reach equilibrium? Usually we think about some

sort of irreversible change from a tiny fraction of phase space, and, after a long time, having no way

to know what that tiny fraction was. However, under unitary time evolution, we know where the

initial state was. Thus the first question is what thermal equilibrium even means in this context.

Remark 1. This is actually deeply connected to the black hole information paradox. According to

Hawking’s calculation for an evaporating black hole, the Hawking radiation should only be charac-

terized by a small number of paramters such as the temperature or mass of the black hole, but a

quantum black hole evolving unitarily doesn’t forget any information.
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1.1 Thermalization & Localization

Here we will consider highly excited, strongly interacting many-body systems. A standard

assumption of statistical mechanics is that this system goes to thermal equilibrium at late times.

This makes sense, but must this always be true? What does “thermal equilibrium” mean in this

context, and how is it reached? How does classical hydrodynamics emerge from unitary quantum

dynamics? Anderson, in 1958, gave the first example of a system which could be many-body

“localized” and fail to go to thermal equilibrium. (Absence of Diffusion in Certain Random Lattices)

The question he raised in 1958 is: Can an isolated, strongly interacting many-body system act as

its own “bath” and bring its subsystems to thermal equilibrium? The two *generic* (not fine-tuned

in any way) answers are

1. Yes: the system is thermalizing

2. No: the system is many-body localized. E.g. integrable models. These have extensively

many conservation laws, so any thermalization must obey these conservation laws, so they

don’t generically thermalize to a Gibbs ensemble where temperature is a parameter; instead

they thermalize to generalized Gibbs ensembles.

There are some systems that are sort of intermediate to the above two possibilities. E.g. many-

body scars, ie. systems where the vast majority of initial states do approach thermal equilibrium,

but there are states that don’t.

If you have thermalizing on one hand and localization on the other hand, what is the whole

chaos between the two? As of now, our current understanding is that there are only two generic

possibilities, i.e. if we have one intermediate system and perturb it in parameter space, it goes to

one or the other.

In thinking about these new systems, we think about different classes of models. We have

1. Time-independent Hamiltonians: U(t) = e−iHt

2. Floquet systems: H(t+ T ) = H(t), U(nT ) = [U(T )]T

3. Unitary circuits (e.g. from quantum information theory)

Remark 2. The Google experiment claiming quantum supremacy really just implemented a random

unitary circuit and characterized the behavior of that circuit.

A natural question is whether systems with more structure, e.g. have many-body eigenstates, is

there more structure implied?

The Eigenstate Thermalization Hypothesis (ETH) states that if all “reasonable” initial
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states reach thermal equilibrium, then eigenstates of H must be thermal:

H |n〉 = En |n〉 (3)

TrB |n〉 〈n| = TrB
e−βnH

Z
(4)

Eigenstates are time-independent, so how would an eigenstate reach thermal equilibrium in time?

ETH says that they must already be thermal. This means that, in systems that are thermalizing

and obey ETH, every single eigenstate is thermal and forms a microcanonical ensemble.

The only “generic” (that we’re aware of) exception to thermalization is localization. This occurs

in systems that are not translationally invariant. An actual experiment verifying this was done in

a system of cold atoms (Choi et. al. Science (2016), Screiber et. al (2015)). A localized system

retains local memory of its initial conditions forever i.e. is observable. Globally, unitary dynamics

preserves all information, but locally we preserve local information.

So, when is ETH obeyed? Yes: (strong version) for all eigenstates at finite temperature.

(weak version) for most eigenstates at finite temperature. This weak version occurs in many body

quantum scars. For examples, the AKLT chain. No: In many body localized systems, integrable

systems (generalized Gibbs ensemble). For some observable O at some temperature 1
β ,

〈O〉β =
1

Z
Tr[e−βHO] (5)

if τ =∞, β = 0, and

〈O〉β=0 =
Tr[O]

Z
(6)

The observable could be energy density. Most eigenstates entropically will live near this energy

density. Each state has a global energy (with T some global temperature) and energy density E/V .

For ρ for the whole system, we have

TrB [ρ] = ρA(t)
t,V olB→∞−−−−−−−→ TrB [ρthermal(t)] (7)

so if we have a thermal density matrix ρ at the temperature set by the energy density of the

state we’re considering (which, for an eigenstate, is just the energy density), the reduced density

energy matrix of the subregion at late times approaches the reduced density matrix appropriate

to a thermal density matrix.
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1.2 Entanglement Dynamics

In systems that reach thermal equilibrium, the states approach a volume law which states that

the rest of the region B can act as a bath for all spins in A. Then the Von Neumann entanglement

entropy for region A agrees with the thermodynamic entropy at the temperature that’s appropriate

to the eigenstate/initial state that we’re considering, so the entanglement entropy scales with the

volume. On the other hand, one of the best diagnostics of locallization (because transport doesn’t

really work) is in the dynamics of entanglement in the eigenstates of an MBL system. In MBL

systems, states have an area law for entanglement: only the spins right near the edge in A are

entangled to the spins in B, and B is not able to act like a bath and bring all states in A to thermal

equilibrium. So in MBL systems, entanglement entropy scales with the perimeter of the subregion,

so the difference between thermalization and localization is really examining the entanglement

properties of the system.

2 Thermalization & the Eigenstate Thermalization Hypoth-

esis

In strongly interacting, highly excited systems, we have the natural question: Do these systems

reach thermal equilibrium under their own internal unitary dynamics? As above, thermalizing

systems answer yes, MBL systems, integrable systems, etc. answer no. For both cases, how and

why to the dynamics establish equilibrium or not? Furthermore, how does unitary dynamics lead

to apparently irreversible changes? The types of systems we’ll consider are

1. Time-independent Hamiltonians H(t) = H, where energy is conserved, and we consider

eigenstates of H

2. Floquet systemsH(t+T ) = H(t). This means, in the way that momentum is not conserved in

Bloch settings, energy is not conserved, although quasi-energy (energy mod ω) is conserved.

3. Random H(t) with no symmetries.

For the first item, we have U(t) = τe−i
∫ t′
0
dt′H(t′), which, since H(t) = H, we have the energy

eigenstates form a complete basis, so

|ψ0〉 =
∑
α

cα |α〉 (8)

|ψ(t)〉 =
∑
α

cαe
−iEαt |α〉 (9)
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All of the complexity is hidden in Eα and |α〉. In traditional statmech, we have a system S

within an environment E, with |S| << |E|. Then we specify the laws of conservation: we want

to talk about the total energy or the total particle number, etc. These conservation laws define

the appropriate equilibrium states as the maximum entropy states consistent all these different

conservation laws. Usually the way this works is we take variables conjugate to the energy density

or the particle number, assume the environment is at some fixed temperature or chemical potential,

and the system and the environment are exchanging energy, particles, etc. and the system is going

to reach thermal equilibrium at late times as a result of this change. Thus we want

ρS(t)→ ρSeq(T, µ, ...) (10)

where ρSeq is the maximum entropy state consistent with all of the conservation laws in this system.

Implicitly in this system we take advantage of classical chaos. A classically chaotic system

ergodically explores all of phase space, so we can replace very detailed descriptions of all of these

particles with macroscopic descriptions. What is the analogue in the many-body setting? We are

still exploring how to correctly describe quantum chaos, and what the notion of ergodicity means

in this many-body setting. What we do know how to define is the concept of thermalization.

Definition 1. In a closed quantum system, thermalization is the property that the system suc-

cessfully acts as a bath for its subsystems and brings them to equilibrium at late times and for large

sizes.

Definition 2. A subsystem is a subset of the degrees of freedom of the whole system. For

a subsystem A of system B (A’s complement, as a bath), we require (imprecisely) ||A|| <<

||B||,HA = {|a〉A},HB = {|b〉B},Htotal = HA ⊗ HB spanned by {|a〉A ⊗ |b〉B} with hamiltonian

H = HA +HB +HAB.

We assume that there are some local degrees of freedom, e.g. spins on some site. The subsystem

is some low-order constructions in terms of these local operators. The observables are also going

to be low-order constructions in terms of local observables.

∑
i∈A

Oi (11)

for Oi local operators. These are a vanishing subset of all the operators defined on our Hilbert

space.

Definition 3. States can be pure or mixed. A state is given by its density matrix ρ. This
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corresponds to the probability density in state space. We know Tr[ρ] = 1, and ρ =
∑
n pn |n〉 |n〉.

In general Tr[ρ]2 ≤ 1, with equality if and only if it is a pure state. The time evolution of this

state is, again, given by the Schrödinger equation.

So now we have a state defined in AB given by ρAB . If we want to define the state on the

subsystem we take the reduced-density matrix TrB [ρAB ].

Definition 4. What we mean by thermal equilibrium is

lim
t,B→∞

ρA(t) = TrB(ρAB)→ TrB [ρeq] (12)

The appropriate equilibrium state ρeq (which is not unique) respects all conservation laws in

our system.

Remark 3. There are classes known as integrable systems that have infinitely many local conserved

quantities, taking the form

Nq =
∑
i

cq,iOq,i (13)

q = {0, 1, ...} (14)

where the sum is over every site i.

Now we need to specify conserved quantities. We know energy density E/V is conjugate to

temperature, number density is conjugate to chemical potential, and we need these quantities to be

well-defined in the thermodynamic limit. We have the expectations 〈E〉 ∝ V, 〈∆E〉 ∝ V 2, α < 1.

Only when we have

lim
V→∞

〈∆E〉
〈E〉

→ 0 (15)

do we have a well-defined energy density. Only then can we have a well-defined temperature for our

system as a whole. So if we have initial states which are macroscopic superpositions of states that

have very different (extensively different, to be precise) expectation values for energy or number,

then the energy is so uncertain that we don’t know what energy we’re supposed to be thermalizing

to, so we can’t define an appropriate equilibrium ensemble because we don’t know what the right

temperature should be.
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Definition 5. If we start with an out-of-equilibrium initial state |ψ0〉, which could be a product

state, and we time-evolve it under a Hamiltonian, we see what the dynamics look like. We prepared

|ψ0〉 by preparing the ground state of some Hamiltonian and then, immediately after time t = 0

quench to a different Hamiltonian, which means we vary the experimental parameters as fast as

we can to time evolve our initial state under a different Hamiltonian. In practice people start

with product states. All such initial states behave well, i.e. have sub-extensive uncertainties in all

conserved quantities.

Suppose we have a state ρ which is a candidate thermal state. ρ can be mixed or pure. From

ρ we get ρA = TrB(ρ). We say ρ is thermal if ρA → ρeqA . In the ETH, we consider eigenstates as

our candidate states. These are pure states, but the eigenstate can individually be thermal if, in

this limit, if (for |n〉 the nth energy eigenstate)

TrB(|n〉 〈n|)→ ρeqA (16)

(One candidate for ρeq is 1
Z

∑
n e
−βEn |n〉 〈n|)

Remark 4. For a system with no eigenstates, it is considered thermalized if we reach the maximum

entropy state. E.g. for Floquet systems or H(t) with no conservation laws, ρeqA ∝ 1A. The Gibbs

ensemble at infinite temperature also approaches the identity.

If we have a thermal state, all local information is set by the conserved quantities, and has

forgotten everything about the initial condition, i.e. if ρ0 → ρeq, all local information at late times

is only set by the macroscopic conserved quantities, and all other information about the initial

state is hidden in non-observable operators.

The ETH has two versions. The strong version states that every MB eigenstate at finite t > 0

is a thermal state (the weak version states most). Suppose |ψ0〉 is a non-equilibrium initial pure

state. Then 〈E〉 = 〈ψ0|H |ψ0〉 , 〈∆E〉 =
√
〈ψ0|H2 |ψ0〉 − 〈H〉2. If |ψ0〉 is a well-defined state, then

∆E
E → 0 as V →∞. Then |ψ0〉 has a well-defined energy density. We can use the energy-entropy

curve to define temperature via dS
dE = 1

T . If we wait over time, |ψ0〉
t−→ TrB [|ψ0(t)〉 〈ψ0(t)|] =

TrB [ρ0(t)] = TrB [ e
−βH

Z ]. Notice that the state determines the temperature, because the system is

8



isolated. For an energy eigenstate,

H |α〉 = Eα |α〉 (17)

|ψ0〉 =
∑
α

cα |α〉 (18)

|ψ(t)〉 =
∑
α

cαe
−iEαt |α〉 (19)

〈ψ(t)|O |ψ(t)〉 =
∑
α,β

c∗βcαe
−i(Eα−Eβ)τ 〈β|O |α〉 (20)

=
∑
α

|cα|2Oαα +
∑
α 6=β

c∗βcαe
−i(Eα−eβ)τOβα (21)

so we have all of these random phases e−i(Eα−eβ)τO. In these hamiltonians, we assume there are

no degeneracies. Degeneracies usually come from symmetries, but we consider that we are working

in one block of the hamiltonian, i.e. all symmetries have already been accounted for. If we have

Eβ1
+ ...+ Eβn = Eα1

+ ...+ Eαn (22)

Then we know that |β1...βn〉 is some permutation of |α1...αn〉 so there are no symmetries in the

problem.

||HAB || ∝ exp(V ), e.g. 2L for spin- 1
2 in a 1-dimensional chain. The energies are extensive,

so if we take the full spectrum from E0 to E2L−1, we know since E0, E2L−1 scale with V , then

E2L−1 − E0 ∝ V . We have jammed in 2L energy levels in this extensive spacing. Thus we have

E0

E2L−1 − En
=
αV

2V
∝ e−V (23)

so we have exponentially decaying energy differences as the system grows. In the limit as t →

exp(V ), we have that all of the differences become some random numbers and the e−i(Eα−eβ)τ

term goes to zero, so we are left with the diagonal term
∑
α |cα|2Oαα.

So thermal equilibrium is the diagonal piece
∑
α |cα|2Oαα → Oeq = Tr[OρGibbs(t)]. If this

expression has to hold for absolutely every initial state, then we know that Oαα must be thermal.

This is the ETH. Srednicki’s statement in particular is

〈a|O |β〉 = O(E)δαβ + e−
S(E)

2 f(E,ω)Rαβ (24)

where O is a smooth function of E :=
Eα+Eβ

2 ((E) = 〈O〉Th+O(V −1), 〈O〉Th = 1
ZTr[e

−βHO]), and

δαβ is the diagonal part, f(E,ω) is a smooth function of E and ω (usually decaying for large ω),
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and Rαβ is a random number of mean 0 and standard deviation 1. This tells us that off-diagonal

matrix elements are exponentially small.

3 Quantum Statistical Mechanics

The Transverse Field Ising Model (TFIM) is the system with Hamiltonian

H = −J
∑
i

σzi σ
z
i+1 − h

∑
i

σxi (25)

The ground state of H is ferromagnetically ordered when J > h, is a paramagnet for h > J , and

the system undergoes a phase transition when h = J . For a system of L spins, let

σαi = 1⊗ ...⊗ 1⊗ σα ⊗ 1⊗ ...⊗ 1, α ∈ {x, y, z} (26)

3.1 Block-diagonalization

The TFIM has a symmetry with the operator P =
∏
i σ

z
i , which flips all spins in the z basis. It is

easy enough to create P and H using scipy’s sparse matrix methods. Since P flips all spins, P 2 = 1,

so P ’s eigenvalues are ±1. Thus we can transform H into a block-diagonal matrix, corresponding

to the +1 and -1 sectors. By finding the eigenvectors and eigenvalues of these matrices, we can

greatly speed up the solving of the Hamiltonian: (the following code is in python using numpy and

scipy sparse matrix methods)

def diagonalize_with_P_v1 (H, P, L ) :

’ ’ ’ assuming P i s d iagona l , i . e . us ing

P = gen_op_prod ( s z_ l i s t ) ’ ’ ’

diagP = P. d iagona l ( )

posP_inds = np . where ( diagP==1)[0]

posP_sector = np . ix_ ( posP_inds , posP_inds )

negP_inds = np . where ( diagP==−1)[0]

negP_sector = np . ix_ ( negP_inds , negP_inds )

H fu l l = H. toar ray ( )

H_negP = Hfu l l [ negP_sector ]

H_posP = Hfu l l [ posP_sector ]

evals_negP = l i n a l g . e igh (H_negP , e igva l s_on ly=True )

evals_posP = l i n a l g . e igh (H_posP , e igva l s_on ly=True )
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return [ evals_negP , evals_posP ]

Here is an alternative method for block-diagonalizing H: (using argsort)

def permute_in_place (M, p ) :

’ ’ ’ r eorder rows and columns o f matrix M

accord ing to permutat ion vec to r p ’ ’ ’

N = M. shape [ 0 ]

for i in range (N) :

M[ : , i ] = M[ p , i ]

for i in range (N) :

M[ i , : ] = M[ i , p ]

def plot_matr ix_structure (H) :

p l t . imshow (np . where (np . abs (H)>1e−5 ,1 ,0) , cmap=’Greys ’ )

p l t . x l ab e l ( r ’ index ␣ $ i$ ’ )

p l t . y l ab e l ( r ’ index ␣ $ j$ ’ )

p l t . t i t l e ( r ’$H_{ i j }$ ’ )

p l t . show ( )

def diagonalize_with_P_v2 (H, P, L , pr int_Hfu l l = Fal se ) :

’ ’ ’ assuming P i s d iagona l , i . e . us ing

P = gen_op_prod ( s z_ l i s t ) ’ ’ ’

def get_block_inds ( conserved_op_eigs ) :

_, inds = np . unique ( conserved_op_eigs , return_index = True )

return inds

diagP = P. d iagona l ( )

perm = np . a r g s o r t ( diagP )

H fu l l = H. toar ray ( )

permute_in_place ( Hfu l l , perm)

i f pr int_Hfu l l :

p lot_matr ix_structure ( H fu l l )
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_, block_inds = np . unique ( diagP , return_index = True )

block_inds = np . append ( block_inds , [ H fu l l . shape [ 0 ] ] )

e va l s = [ ]

for i in range ( len ( block_inds )−1):

e va l s = np . append ( eva l s , np . l i n a l g . e i g v a l s h ( H fu l l [ block_inds [ i ] : block_inds [ i +1] , block_inds [ i ] : block_inds [ i +1 ] ] ) )

e va l s = np . s o r t ( e va l s )

return eva l s

After this block-diagonalization, we get the following matrix representation of H with L = 8:

Thus we’ve partially split the Hamiltonian into two blocks of size 2L−1 × 2L−1.

In general, to diagonalize H using parity symmetry, we need the eigenvectors of P . In the

x-basis, they are of the form |±1,±2, ...,±L〉. This is done in the following code:

def gen_par i ty_eigenstate (n , L ) :

’ ’ ’ g enera t e s the n ’ th pa r i t y e i g e n s t a t e

by t a k ing b inary r ep r e s en t a t i on o f n and

t r a n s l a t i n g 0 −> |+> and 1 −> |−> ’ ’ ’

b = np . binary_repr (n , width=L)

s t a t e = [ 1 , 1 ] i f b[0]== ’ 1 ’ else [1 ,−1]

for j in range (1 ,L ) :

i f b [ j ]== ’ 1 ’ :

s t a t e = spar s e . kron ( s tate , [ 1 , 1 ] , ’ c s c ’ )
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else :

s t a t e = spar s e . kron ( s tate , [ 1 , −1 ] , ’ c s c ’ )

s t a t e = s t a t e / 2∗∗(L/2) # proper l y normal ize

return s t a t e

def diagonalize_with_P_v3 (H, P, L , pr int_Hfu l l = Fal se ) :

’ ’ ’ assuming P i s in x−bas i s , i . e . us ing

P = gen_op_prod ( s x_ l i s t ) ’ ’ ’

even_projector = np . z e ro s ( (2∗∗ (L−1) ,2∗∗L) )

odd_projector = np . z e ro s ( (2∗∗ (L−1) ,2∗∗L) )

even_counter , odd_counter = 0 , 0

for n in range (2∗∗L ) :

s t a t e = gen_par i ty_eigenstate (n , L)

i f s t a t e [0 ,0]== s t a t e [ 0 , 2∗∗L−1] :

even_projector [ even_counter , : ] = s t a t e . toar ray ( )

even_counter += 1

else :

odd_projector [ odd_counter , : ] = s t a t e . toar ray ( )

odd_counter += 1

i f pr int_Hfu l l :

U = np . z e ro s ( (2∗∗L,2∗∗L) )

U[ : 2 ∗ ∗ ( L−1) , : ] = even_projector

U[2∗∗ (L−1) : , : ] = odd_projector

H_transformed = U@H@U.T

plot_matr ix_structure ( H_transformed )

# Get the pa r i t y s e c t o r s o f the Hamiltonian wi th the p r o j e c t o r s

H_even = even_projector@H@even_projector .T

H_odd = odd_projector@H@odd_projector .T

evals_even = l i n a l g . e igh (H_even , e igva l s_on ly=True )

evals_odd = l i n a l g . e igh (H_odd, e igva l s_on ly=True )
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return np . s o r t (np . concatenate ( ( evals_even , evals_odd ) ) )

Resulting in the following matrix:

3.2 Open boundary conditions, parity and reflection

For open systems, we have spatial reflection symmetry, with reflection operator R : i→ L− i.

For periodic systems, we have R, but we also have spatial translation invariance, with translation

operator T : i→ i+ 1.

Remark 5. Notice that [H,R] = [H,T ] = 0, [R, T ] 6= 0.

For open boundary conditions, we can simultaneously diagonalize H using R and P . R2 = 1,

so the eigenvalues of R are ±1. This simultaneous diagonalization should gives blocks of size 2L/4.

Let |ΨP 〉 be the eigenstates of P , i.e. states of the form |±1,±2, ...,±L〉. Then

|ΨRP 〉 :=
|ΨP 〉 ±R |ΨP 〉√

2
(27)

are eigenstates of both P and R. We implement this with the following code:

def b in2 in t (b ) :

L = len (b)

n = 0

for i in range (L ) :

i f b [ i ] == ’ 1 ’ :

n += 2 ∗∗(L − i − 1)

return n
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def l ex_order (b1 , b2 ) :

’ ’ ’ order b i t s t r i n g s based on the va lue o f t h e i r

i n t e g e r s in base 10. Sma l l e s t f i r s t . ’ ’ ’

n1 , n2 = b in2 in t ( b1 ) , b in2 in t ( b2 )

i f n1 == n2 :

return 0

e l i f n1 > n2 :

return 1

else :

return −1

def gen_ref lect ion_op (L ) :

N = 2∗∗L

row , c o l = np . arange (N) , np . z e r o s (N)

data = np . ones (N)

for i in range (N) :

c o l [ i ] = b in2 in t (np . binary_repr ( i , width=L) [ : : − 1 ] )

R = spar s e . csr_matrix ( ( data , ( row , c o l ) ) , shape=(N, N) )

return R

def i spa l indrome (b ) :

return ( b in2 in t (b) == b in2 in t (b [ : : − 1 ] ) )

def ge t_b i t s t r ing_par i ty (b ) :

return 1 i f b . count ( ’ 0 ’ )%2 == 0 else −1

def diagonalize_with_PR (H, P, R, L , pr int_Hfu l l = Fal se ) :

P_even_R_even_states = [ ]

P_even_R_odd_states = [ ]

P_odd_R_even_states = [ ]

P_odd_R_odd_states = [ ]

for i in range (2∗∗L ) :

b = np . binary_repr ( i , width=L)
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i f i spa l indrome (b ) :

s t a t e = gen_par i ty_eigenstate ( i , L)

pe ig = get_b i t s t r ing_par i ty (b)

i f pe ig > 0 :

P_even_R_even_states . append ( s t a t e . toar ray ( ) [ 0 ] )

else :

P_odd_R_even_states . append ( s t a t e . toar ray ( ) [ 0 ] )

i f l ex_order (b , b [ : : − 1 ] ) <= 0 :

continue

s t a t e = gen_par i ty_eigenstate ( i , L)

r e f l e c t e d_s t a t e = gen_par i ty_eigenstate ( b in2 in t (b [ : : − 1 ] ) , L)

R_even_state = ( s t a t e + r e f l e c t e d_s t a t e )/np . s q r t (2 )

R_odd_state = ( s t a t e − r e f l e c t e d_s t a t e )/np . s q r t (2 )

pe ig = (R_even_state∗P∗R_even_state .H) . toar ray ( ) [ 0 , 0 ]

i f pe ig > 0 :

P_even_R_even_states . append (R_even_state . toar ray ( ) [ 0 ] )

P_even_R_odd_states . append (R_odd_state . toar ray ( ) [ 0 ] )

else :

P_odd_R_even_states . append (R_even_state . toar ray ( ) [ 0 ] )

P_odd_R_odd_states . append (R_odd_state . toar ray ( ) [ 0 ] )

i f pr int_Hfu l l :

U_PR = spar s e . csr_matrix (np . array (P_even_R_even_states+P_even_R_odd_states+P_odd_R_even_states+P_odd_R_odd_states ) )

H_PR = U_PR ∗ H ∗ U_PR.H

plot_matr ix_structure (H_PR. toar ray ( ) )

ee_pro jec tor = spar s e . csr_matrix ( np . array (P_even_R_even_states ) )

eo_projector = spar s e . csr_matrix ( np . array (P_even_R_odd_states ) )

oe_pro jector = spar s e . csr_matrix ( np . array (P_odd_R_even_states ) )

oo_projector = spar s e . csr_matrix ( np . array (P_odd_R_odd_states ) )
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H_ee = ee_projector@H@ee_projector .H

H_eo = eo_projector@H@eo_projector .H

H_oe = oe_projector@H@oe_projector .H

H_oo = oo_projector@H@oo_projector .H

evals_ee = l i n a l g . e igh (H_ee . toar ray ( ) , e i gva l s_on ly=True )

evals_eo = l i n a l g . e igh (H_eo . toar ray ( ) , e i gva l s_on ly=True )

evals_oe = l i n a l g . e igh (H_oe . toar ray ( ) , e i gva l s_on ly=True )

evals_oo = l i n a l g . e igh (H_oo . toar ray ( ) , e i gva l s_on ly=True )

return np . s o r t (np . concatenate ( ( evals_ee , evals_eo , evals_oe , evals_oo ) ) )

This results in the diagonalization

3.3 Periodic boundary conditions, parity and translation

For periodic boundary conditions, we can use P and T . T splits the Hilbert space roughly into L

blocks of length 2L/L. This is a much greater advantage than the factor of 2 from spatial reflection.

P further splits each of these blocks into 2, giving a total of 2L blocks with size ∼ 2L/(2L).

def t r a n s l a t e_b i t s t r i n g (b , d ) :

’ ’ ’ t r a n s l a t e s the b i t s t r i n g b by d p o s i t i o n s ’ ’ ’

b1 = b [0 : d ]

b2 = b [ d : ]

return b2 + b1
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def get_cycle_length (b ) :

’ ’ ’ computes the number o f t r a n s l a t i o n s

a l l owed be f o r e b i t s t r i n g b comes back

to i t s e l f ’ ’ ’

n = b in2 in t (b)

L = len (b)

for i in range (1 ,L ) :

i f n == bin2 in t ( t r a n s l a t e_b i t s t r i n g (b , i ) ) :

return i

return L

def get_T_representat ives (L ) :

’ ’ ’ g e t one r e p r e s e n t a t i v e from each s e t

o f b a s i s s t a t e s t ha t are e q u i v a l e n t

up to ac t i on o f the t r a n s l a t i o n op T ’ ’ ’

reps = [ ]

for n in range (2∗∗L ) :

f l a g = False

b = np . binary_repr (n , width=L)

for d in range (1 , L ) :

i f t r a n s l a t e_b i t s t r i n g (b , d) in reps :

f l a g = True

i f not f l a g :

reps . append (b)

return reps

def get_PT_eigenstate ( rep , k ,L , c y c l e ) :

s t a t e = gen_par i ty_eigenstate ( b in2 in t ( rep ) , L)

for i in range (1 , c y c l e ) :

s t a t e += np . exp (2 ∗ np . p i ∗ 1 j ∗ k ∗ i /L) ∗

gen_par i ty_eigenstate ( b in2 in t ( t r a n s l a t e_b i t s t r i n g ( rep , i ) ) , L)

s t a t e = s t a t e /np . sq r t ( c y c l e )

return s t a t e

def diagonalize_with_PT (H, P, L , pr int_Hfu l l = Fal se ) :
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t o l = 0 .1/L

P_even_states = [ ]

P_odd_states = [ ]

r eps = get_T_representat ives (L)

cyc l e_lengths = { r : get_cycle_length ( r ) for r in reps }

n_up = { r : r . count ( ’ 1 ’ ) for r in reps }

countkp = 0

countkm = 0

indsp lu s = [ ]

indsminus = [ ]

for k in range (L ) :

i nd sp lu s . append ( countkp )

indsminus . append ( countkm)

for r in reps :

tmp = k∗ cyc l e_lengths [ r ] /L

i f np . abs (np . round(tmp) − tmp) < t o l :

s t a t e = get_PT_eigenstate ( r , k , L , cyc l e_lengths [ r ] )

pe ig = np . r e a l ( ( s t a t e ∗P∗ s t a t e .H) . toar ray ( ) [ 0 , 0 ] )

i f pe ig > 0 :

P_even_states . append ( s t a t e . toar ray ( ) [ 0 ] )

countkp = countkp+1

else :

P_odd_states . append ( s t a t e . toar ray ( ) [ 0 ] )

countkm = countkm+1

indsp lu s . append ( countkp )

indsminus . append ( countkm)

U_PT = spar s e . csr_matrix (np . array ( P_even_states+P_odd_states ) )

H_PT = U_PT ∗ H ∗ U_PT.H

Hfu l l = H_PT. toar ray ( )
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i f pr int_Hfu l l :

p lot_matr ix_structure ( H fu l l )

block_inds = np . append (np . array ( ind sp lu s ) , np . array ( indsminus [ 1 : ] )+ indsp lu s [−1])

e va l s = [ ]

for i in range ( len ( block_inds )−1):

e va l s = np . append ( eva l s , np . l i n a l g . e i g v a l s h ( H fu l l [ block_inds [ i ] : block_inds [ i +1] , block_inds [ i ] : block_inds [ i +1 ] ] ) )

e va l s = np . s o r t ( e va l s )

return eva l s

This results in the diagonalization

While R and T do not commute, in the k = 0 and k = ±π sectors, reflection symmetry/anti-

symmetry can still be utilized. This does not provide a large speed-up in general as compared to

the gains seen by T .

4 Quantum chaos

We’ve seen that it is already pretty hard to extend what thermalization means from the classical

to quantum context. It is similarly difficult to do this with chaos.
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In classical chaos we usually use the description of a Lyapunov exponent

λL ∼
dq(t)

dq0
(28)

but having a Lyapunov exponent in the quantum case is harder because there’s already a phase

ambiguity, and the Schrödinger equation is linear; evolving using unitary time evolution doesn’t

change the amplitude. In quantum chaos we use “OTOCs,” or Out-of-Time-Ordered Corre-

lators; and these are useful quantities for probing chaos in systems like black holes or a system

with many degrees of freedom (large n systems). But for spin systems or very quantum systems

we consider here it is difficult to make this work; they fail to give exponential dependence when

considering strongly quantum spin- 1
2 systems.

We also have to consider the quantum analogue of ergodicity, or the exploration of phase

space. Traditionally this is described using canonical coordinates (q, p), which are conjugate coor-

dinates, and again it is hard to translate this to the quantum context because we can’t even define

position and momentum at the same time due to Heisenberg uncertainty.

The point is that, although we have some tools to describe these, like OTOCs and Random

Matrix Theory (RMT), we need a whole new framework. We also can use the Riemann Zeta

function; the eigenvalues of a random matrix are related to the zeros of the Riemann Zeta func-

tion via Montgomery’s Conjecture. The relationship with RMT and quantum chaos is difficult

via Gutzwiller’s Trace Formula, which links the spectrum of random matrices in terms of the

density of states with something classical which is a sum over periodic orbits:

ρ(E) ∼
∑
ρ0

Ap0e
iSρ0/~ (29)

There is a distinction between few-particle quantum chaos with a semiclassical analogue; we need

to think about few particle quantum chaos in the semiclassical limit vs many-body quantum chaos

for systems that are far from any kind of semiclassical limit (e.g. strongly spin-1
2 systems). There

this notion of periodic orbits becomes far less well-defined because there isn’t any natural classical

analogue. Lyapunov exponents have to do with small perturbations in phase space leading to

exponential differences in trajectories.

In classical chaos, we have a 2n-dimensional phase space

R = (q1, ..., qn, p1, ..., pn) (30)
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evolving via Hamilton’s equations

dq

dt
= −∂H

∂p
(31)

dp

dt
=
∂H

∂q
(32)

Already in this system we assume that energy is conserved, and anything additionally conserved

constrains our motion in phase space even more, which is why if we say in an integrable system,

in the classical context we are constrained to the invariant torus. Classically, 2-body motion is

pretty easy to do, but adding a third body classically makes the problem very difficult to solve.

4.1 Random Matrix Theory

This was started in the 1950’s by Wigner, trying to write down Hamiltonians for interactions

within nuclei. We wrote a Hamiltonian as an N ×N randome matrix

H →


x11 ... x1N

...
. . .

...

xN1 ... xNN

 (33)

where the entries were from a Gaussian distribution. The mean doesn’t usually matter, but the

variance is important.

Definition 6. Entries taken from a Gaussian distribution independent from one another is denoted

i.i.d. (This doesn’t mean they are taken from a Gaussian but they are independently identically

taken from this Gaussian distribution)

Remark 6. The universal properties of the spectra of a nuclei looks remarkably well like that of a

random matrix. A random matrix has become one of the best known diagnostics of quantum chaos.

When you have a system which is chaotic, ergodic, or whatever, the spectra of these systems end

up sharing many universal properties with these random matrices.

The whole problem with RMT is starting from a matrix such as the one above and computing

the characteristic equation i.e. finding the eigenvalues λ1, ..., λn. We start with some probability

distribution on our entries, p(x11, ..., xNN ). It they’re all random we have N2, if symmetric then
N(N+1)

2 . Then we want to find a probability distribution on the eigenvalues p(λ1, ..., λn) but most

of the time on the spacings p(s1, ..., sn−1), si = λi+1 − λi.
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Example 1. For a random real and symmetric 2×2 matrix, we have

H =

x1 x2

x2 x3

 ;x1, x3 ∈ N(0, 1), x2 ∈ H(0,
1

2
) (34)

p(x) =
1√
2π
e−

1
2x

2

(35)

−λ2 + Tr[H]λ+ det(H) = 0 (36)

λ1,2 =
1

2
Γ(x1 − x3)2 ±

√
f(x1, x2, x3) (37)

S = λ2 − λ1 =
√

(x1 − x3)2 + 4x2
2 (38)

p(s) =

∫
dx1

∫
dx2

∫
dx3p(x1)p(x2)p(x3)

∫
(s−

√
(x1 − x3)2 + 4x2

2) (39)

(40)

We then get the level spacings as

p(s) ∝ sβe−s
2

(41)

where β = 1 for real entries and β = 2 for complex entries. This is known as Wigner’s Surmise.

The ensemble that we draw our entries from depends on the symmetries of the Hamiltonian.

If we have a real Hamiltonian, it is described by the Gaussian Orthogonal Ensemble (GOE),

rather than the Gaussian Unitary Ensemble (GUE). The diagonals always have to be real to

make the matrix Hermitian. We also have a symplectic ensemble (GSE), in which β = 4.

Remark 7. In the GOE ensemble we can diagonalize our Hamiltonian via an orthogonal matrix,

and this means that the entries are real, which means we have a system which have time-reversal

symmetry because energy is conserved. Thus if we have a system with time-reversal symmetry

we’re going to want to draw our matrices from the GOE, while if we have a Hamiltonian that

breaks time-reversal symmetry we’ll want to model it with the GUE. One representative of time-

reversal symmetry is complex conjugation.

In one particle quantum chaos we can see the use of RMT. For something with a classical

analogue, e.g. a billiard ball in an ellipsis-shaped area, the system is chaotic: it bounces all around

the ellipsis. In the quantum case, we have Ĥ = p̂2

2m + V in the geometry in the problem and

look at these quantum energy levels and look at the distribution of level spacings, we get that, for
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quantum systems that have a classical analogue to a classically chaotic system, we end up getting

BFS statistics. One the other hand, for quantum systems for which the classical limit is integrable,

we end up with Poisson level statistics. This is known as the quantum chaos conjecture.

Now we are getting to many-body quantum chaos, where we consider systems like strong spin- 1
2

systems, and there is no semi-classical analogue. There is no classical analogue to a spin- 1
2 ising

chain or XXZ chain. For thermalizing systems, their spectra look like results from RMT. For

integrable systems or MBL, there are many symmetries in our problem, our level statistics end up

looking Poisson.

In large N , p(s) for RMT and Hamiltonians match very well. For the density of states p(E),

the rnadom matrix gives a semicircle, while near the edges, for most physical Hamiltonians, p(E)

looks much more like a Gaussian.

Definition 7. We have been considering λi+1−λi. There is another diagonstic called the Spectral

Form Factor that probes the correlations between all distances of spectrum as a function of time

K(t). If we go to early times we find large distances and if we look at later times we look at very

nearby energies.

Taking the staircase function N(E) :=
∑
nO(E − En) and going to the density of states

ρ(E) = dN
dE =

∑
n δ(E − En), and then we go from the density of states to a two-point function

R(E) = 〈ρ(E0 + E
2 )ρ(E0 − E

2 )〉E0
(in a small-energy window), and then going from the two-point

function we get the spectral form factor by taking the Fourier transform of the two-point function:

N(E)→ ρ(E)→ R(E)→ K(t) (42)∑
n

O(E − En)→
∑
n

δ(E − En)→ 〈ρ(E0 +
E

2
)ρ(E0 −

E

2
)〉E0

F.T.−−−→
∫
eiEtR(E)dE (43)

=
1

N

∑
n,m

eit(En−Em) (44)

with some normalization. K(t) decreases in time until we reach the Thouless time, where level

repulsion starts kicking in, and then K(t) increases with time. This manifests itself in what is

known as a “ramp” in K(t). See 1.

For large time, since the exponent is negative, we essentially get random phases that add to zero,

so we reach a plateau in K(t) starting at the Heisenberg time, which is around the dimension

of the Hilbert space. The height of this plateau depends on how we normalize the spectral form

factor ( 1
N ) and if we have degeneracies, because if we have degeneracies we don’t need n = m
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K(t)

t

Thouless

Heisenberg

Figure 1: K(t) graph

for En = Em; therefore if we have degeneracies the plateau is essentially higher. The benefits of

studying K(t) are:

1. It is not sensitive to being in the correct symmetry sector (not proven but checked numerically

for many systems)

2. We can calculate K(t) without having to know our full spectrum: K(t) ∼
∑
p0
Ap0e

i
Sp0
~ in

the semi-classical limit.

5 Breakdown of Thermalization

Integrable systems don’t thermalize, and there is an interesting experiment by David Weiss’s

group in 2006 that created a “quantum newton’s cradle,” which took a large amount of strongly

interacting atoms (a bose gas), tuned their parameters to attain integrability, and they observed

oscillation for long periods of time.

The only known generic, stable exceptions to thermalization localized systems. There are

generally three versions of localization:

1. Many-body localization (MBL). These are interacting, isolated, highly excited systems. This

started with Anderson in 1958, but most literature is recent.

2. Anderson localization. These are isolated, highly excited non-interacting particles.
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3. Ground state phase transitions in the presence of disordered interactions. These are not

necessarily isolated. Some examples of transitions are metal-to-insulator, superconductor-to-

insulator, superfluid-to-Bose-glass transitions.

The first report of a system where thermalization may fail was by Anderson in 1958. He considered

a system of disordered (randomly placed) spins in a semiconductor with no mobile charges (so the

spins were the only degrees of freedom that were relevant). He was considering the system in the

presence of random interactions; spin-spin exchange interactions (e.g. xx + yy), density-density

interactions (e.g. coulomb interactions), etc. These spins were in an applied Zeeman field. No psin-

phonon interactions were present, so it was an isolated system at high temperature. The setting

that was novel was the idea that Anderson localization occurs in systems that are not translationally

invariant (in the presence of “quenched disorder”). All realistic solids will have disorder in the form

of impurities, defects, etc. This was revolutionary because the starting point of the study of

crystalline solids uses Bloch’s theorem, where wer assume discrete translational symmetry and

eigenstates are delocalized Bloch waves. Anderson discovered that disorder can fundamentally

change the behavior of materials, leading to brand new phenomenology: Bloch’s theorem tells us

that our wavefunctions are delocalized for all of real space. Anderson showed that disorder can

exponentially localize wavefunctions in real space. Thus if we solve a problem with disorder, we’ll

find that our eigenstates, instead of being spread across all space, remain exponentially stuck near

different regions in real space. This is counterintuitive from usual quantum mechanics; yes we have

a disordered potential, we still might be able to tunnel, so we can get delocalized wavefunctions.

“Localization was a different matter: very few believed it at the time, and even fewer saw its

importance; among those who failed to fully understand it at first was certainly its author. It has

yet to receive adequate mathematical treatment, and one has to resort to the indignity of

numerical simulations to settle even the simplest questions about it.” - Philip W. Anderson

In general there are very few exact results about localized.

5.1 Single-Particle Anderson Localization

We have a system with Hamiltonian

H =
∑
i

hic
†
i ci + J(c†i ci+1 + h.c.), hi ∈ [−W,W ] (45)

where ci are fermionic operactors {c†i , cj} = δij . This localization comes from detuning (for now

this means that the potentials on adjacent sites are very different). The source of this detuning

can be disorder, deterministic potentials (quasi-periodicity, e.g. V (x),W cos(kx)). This gives a
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localization

|φ(r)|2 ∼ e−r/ξ (46)

of single-particle wavefunctions, in the locator expansion J << W (strong localization). For

example, consider a system with 2 sites, with site energy ε1, ε2, and a hopping term. Then

H =

ε1 J

J ε2

 (47)

when |ε1 − ε2| << J , then

H ≈

0 J

J 0

 (48)

Then we have

|Ψ1,2| ≈
1√
2

(|1〉 ± |2〉) (49)

so our wavefunctions are delocalized.

If, however, |ε1 − ε2| >> J , then the wavefunctions look like that in ??.

Figure 2: Wavefunction when |ε1 − ε2| >> J .

so just for the 2 by 2 example, the degree of the hybridization of the wavefunctions is set by this

competition between the differences in energies between the two sites, and the mixing between the
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sites induced by the hopping.

So when we have a system with many different sites, and W >> J , the off-resonant hopping

is not able to hybridize our single-particle wavefunctions. What Anderson asked is if we had some

particle localized in space, how to that particle spread out in time. Well, at first-order, we only

look at nearest neighbor hoppings:

Vi,i+1

εi − εi+1
(50)

At next-order, this site can couple to its next nearest neighbor.

Vi,i+1

εi − εi+1

V

∆ε
(51)

So at higher and higher orders, we get multiple factors of V divided by ∆E:

Vi,i+1

εi − εi+1

V

∆ε
...
V

∆ε
(52)

so how likely are we to get a resonance, i.e. when V ∼ ∆E. The key point is that, as we go out to

a distance r, our effective hopping teff , for some site and its distant partner, we have

teff ∼ tr ∼ exp(
r

ξ
) (53)

But notice that ∆E(r) ∼ poly( 1
r ), because, when we examine how far we have to go before we

find an energy difference that is small, we sample r different spacings from our distribution, and

we want to know the chance of hitting something small. So the detunings are going down by a

polynomial of r, but the effective couplings are going down exponentially in r, so we always get

that this hopping doesn’t really hybridize. Thus our eigenstates have a localization center, and

end up looking like

|Ψα(rα)|2 ∼ e−|r−rα|/ε (54)

where ξ = f(WJ ). When J ≥W (weak localization), in 1 and 2 dimensions, no matter how weak a

disorder strength is, it is still enough to exponentially localize all our single-particle wavefunctions.

3-dimensions, we can get a “mobility edge,” where we can have the edge seen in 3.

In 1D we can analytically prove localization (strong and weak).
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E delocalized

localized

Figure 3: Mobility edge.

5.2 Many-body localization

For MBL systems, we have

H =
∑
α

eαa
†
αaα +

∑
αβγδ

Vαβγδa
†
αa
†
βaγaδ (55)

where a†α =
∑
α dα(r)c†r are single particle Anderson eigenorbitals. See 4.

|dα(r)|

rα

r

Figure 4: Eigenorbitals.
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and we’ve added in density-density interactions V =
∑
i c
†
i cic

†
i+1ci+1. Suppose we have a strong

Anderson localized problem (so there’s no single-particle mobility edge). So we have strong local-

ized single-particle eigenorbitals, and now we want to add in weak interactions, and ask if that

localization is stable in the addition of interactions. So now we do perturbation theory in the

interaction term V .

Historically, MBL was defined via transport properties, e.g. by examining σDC (conductivity).

Einstein’s relation gives

σ = e2Dν (56)

where D is the diffusion constant and ν is the density of states, so in the absense of diffusion,

σ = 0. Since ρ(T ) = 1
σ(T ) , for

1. Metal: ρ(T )→ ρ0 as T → 0

2. Insulator: ρ(T )→∞ as T → 0

3. MBL insulator ρ(T ) =∞ for some range of T > 0

These historical definitions don’t tell the full story; transport can be subdiffusive σDC = 0 even in

thermalizing systems because of Griffiths effects.

In a single-particle system with a mobility edge, conductivity has Arrhenius form

σ(T ) ∝ e−(Emc−EF )/T (57)

with EF the Fermi energy. In MBL, we want to consider systems with no single-particle mobil-

ity edge. Here, in the presence of phonons, we get phonon-assisted hopping and variable-range

conductivity

σ(T ) ∝ Tαe(δ/T )
1
d
+1

(Mott) (58)

This will be true in the presence of any bath with a continuous spectrum down to ω → 0.

The general framework we’ll take is the following. Choose a local basis. In this basis, H is as

close to diagonal as possible. Then we can rewrite our H as

H = HD +HOD (59)

30



we examine HOD to find out whether our not we can have resonances. When we have many-body

dynamics, we can treat HD as
∑
αE

sp
α a
†
αaα and HOD as

∑
αβγδ Vαβγδa

†
αa
†
βaγaδ. When we write

H like this, we veiw our many-body dynamics as single-particle dynamics on this lattice of basis

states. The basis states are then characterized by the occupations of all of the single-particle

orbitals (Anderson orbitals)

|n〉 = |n1 = {0, 1}, n2 = {0, 1}, ...〉 =
∏

(a†α)nα |0〉 (60)

Then we want to connect this to a different state |m〉 in which the occupations of four of these

orbitals have been changed:

|m〉 = a†αa
†
βaγaδ |n〉 (61)

See 5.

E

V

En

Em

V

Figure 5: Energy jumping via V .

Is V << En −Em? In this problem we say that localization is stable if we find |V | << Eγ +Eδ −

Eα − Eβ . Why? This comes back to the (non-index) δ in the expression

σ(T ) ∝ Tαe−(δ/T )1/d+1

(62)

Definition 8. δ is a very important scale in localization. It is the average energy difference between
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states that live within a localization volume.

In a single-particle context, if we have a density of states ν = #states
energy·volume , then

δ =
1

νξt
(63)

V (r) is short ranged, i.e. V (r) = a†αa
†
βaγaδ. Unless these orbitals α, β, γ, δ with localization centers

rα, rβ , rγ , rδ are not within some localization volume (or length), this matrix element is time. But

when the centers are within some localization length, states have single-particle energies that are

different by order W , so we get some discrete set of energy levels. Then we get a locator expansion

within this interaction strength V . In the literature they have

〈ΦMB
m |C†i |Ψ

MB
n 〉 =

∑
α

V αOα (64)

For localization with interactions, we consider the following Hamiltonian

H =
∑
i

hiσ
z
i + J

∑
i

(σxi σ
x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1) (65)

where the hiσzi are the “detuned” onsite fields (disordered/quasi-periodic), σxi σxi+1 + σyi σ
y
i+1 rep-

resents hopping, and σzi σzi+1 represents interactions. We can do a Jordan-Wigner transformation

and map to spinless fermions, where up 7→ occupied, down 7→ empty:

H 7→
∑
i

hiσ
z
i + J

∑
i

(c†i ci+1 + c†i+1ci + c†i ci, c
†
i+1ci+1) (66)

This is the “Standard Model” of MBL, an interacting version of Anderson’s model. The param-

eters are J,W and, as a function of W/J , the system can be localized or thermalizing.

The simplest example is J = 0. Here |n〉 = |↑↓↑↑ ... ↓〉. This is not thermal; it violates

ETH. There is no transport of spin/energy. The dynamics is just Larmor precession. There are

extensively many constants of motion, {σzi } are constant.

[H,σzi ] = 0, [σzi , σ
z
j ] = 0 (67)

(coming from l-bits, to be discussed later) Here we have 2L energy states. If we take a state’s single

spin and flip it, the energy changes by 2|hi| which is of order W , which is far away in energy. If we

want to take that state and find a state with energy arbitrarily close to it, we’ll need to flip order

L states. This definitely violates ETH: the energies don’t vary smoothly with local operators. See
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6.

2L

|↑↓ ... ↑ ... ↓〉

|↑↓ ... ↓ ... ↓〉

Figure 6: Energy difference of flipping a single spin

This is an integrable model (all free-fermion models are integrable, but this is the simplest),

because we have all {σzi } are conserved quantities, and many-body eigenstates specified by giving

the expectation value under every one of these states. There is also no level repulsion (Poisson

statistics, because adjacent states are characterized by different values).

5.3 Emergent Integrability

The only kind of MBL we really understand and can prove things about is the notion of emergent

integrability. In this picture, the idea is that we continue to have extensively many local integrals

of motion, but they get dressed. So we start with

H =
∑
i

hiσ
z
i + J

∑
i

(σxi σ
x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1) (68)

where H =
∑
i hiσ

z
i are called l-bits (bits because they are spin 1

2 ; they could be qubits more

generally, and “l” because they are localized). In the locator limit J << W . Then the statement

is that the Hamiltonian can be rewritten in the following form:

H =
∑
i

h̃iτ
z
i +

∑
ij

J̃ijτ
z
i τ

z
j +

∑
ijk

K̃ijkτ
z
i τ

z
j τ

z
k + ... (69)

This Hamiltonian is local, and J̃ij is exponentially decaying with i−j. The new variables τzi satisfy

τzi = U†σzi U, (70)

[H, τzi ] = 0, [τzi , τ
z
j ] = 0 (71)
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and are considered as “dressed operators.” If we have a matrix V that diagonalizes our Hamiltonian,

we have

τi = V †σiV (72)

These τis are going to be local themselves. τzi admit an expansion of strings of different σ

τzi = σzi + cijσ
x
i σ

y
j + dijkσ

x
i σ

y
j σ

x
k + ... (73)

Most of the weight of this expansion is focused on these Pauli strings, with is localized near the

site. The existence of such a V is one of the operational definitions of MBL. The existence of l-bits

is known as “emergent integrability.” This is “emergent” because these local operators τzi that all

commute with our Hamiltonian, but they are not conservation laws that we “put in” at the start.

The dressing of the τzi s depends on V which intrinsically depends on every one of the disordered

potential terms and the parameters of our Hamiltonian. Local conservation laws come out of these

parameters. This is responsible for the stability of MBL. Unlike integrable models where we can

perturb it arbitrarily and destroy all conservation laws, with these models we can perturb our

model weakly and our matrix V gets weakly perturbed, and all of our l-bits change a little bit, but

their existence doesn’t disappear. Thus we can weakly perturb our system and get MBL.

The brute force way to find V is extremely computationally costly (go figure, V transforms H

to the eigenbasis). But the locality of V is determined by the permutation of its columns. For our

physical {σ} degrees of freedom, called “p-bits,” our physical basis states look like products of σz:

|↑↓ ... ↓〉 (74)

and our eigenstates look like product states of {τz}. if we want to go from p-bits to l-bits via V ,

notice that V gives back an eigenstate when given a physical basis state. For V to be local, we

want the p-bit to look similar to the l-bit with some minor corrections. If we have an eigenstate

with most of its weight on the physical basis state that we care about, we want V to map this
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basis state to the similar l-bit:

V |↑↓ ... ↓〉 := (75)

... 0 ...

... 0 ...

...
... ...

... 0.8 ...

... 0.9 ...

... 0.8 ...

...
... ...

... 0.0001 ...





0

0

...

0

1

0

...

0



(76)

We have a massive freedom in how to choose V , because we have 2L! eigenvector permutations.

Further, for every eigenvector, we can choose a phase factor. So V is not unique, and finding the

most local V is computationally impossible (it scales exponentially). So we have to be clever about

finding V . If we are deep in the disordered phase to that every eigenstate looks like a product state

with weak dressing, then pick the V that looks the most diagonal and we’re fine. The problem is

that anything interesting is harder. Thus we have to worry about those rare resonances. So when

we have some basis state that is almost in resonance with some other, and they start mixing, this

proliferation of resonances drives the transition out from the MBL phase toward thermalization.

Thus how to treat those resonances and how to localize the effect of those resonances to keep V

to be as local as possible is the challenge.

Remark 8. When a unitary operator is called “local,” it means that it maps local operators to local

operators.

Remark 9. If the Hamiltonian was just

H =
∑
i

hiσ
z
i + J(XiXi+1 + YiYi+1) (77)

then

H =
∑
α

εαa
†
αaα (78)

where we note that a†αaα define our τzi . So V is just the linear transformation that takes the
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physical basis to the single-particle eigenorbital basis.

This gives a bunch of properties of MBL eigenstates. One of these is entanglement dynamics.

In thermalization and MBL, we don’t need to think about transport because we don’t even need

conserved quantities. When we talk about whether or not something thermalizes, we want to

ask if the reduced density matrix is approximately the reduced thermal density matrix, i.e. the

maximal-entropy state consistent with all of the conservation laws in the system. So if we have

no conservation laws in our system, this is proportional to the identity. We want to ask if our

subsystem is getting as entangled as it can with the rest of our system. If it is then the system

is thermalizing, and if not it is localized. In terms of the ETH, what we’re saying is that the

different many-body eigenstates are not going to be thermal. This means that if we take some

eigenstate, it looks like a product state in this l-basis, and the l-bits are just dressed versions of

the physical bits. If we make an entanglement cut across some level of energies, we ask what the

entanglement shared across this cut in physical real space. Because the l-bits have these tails, all

the entanglement is only coming from some number of l-bits that live within some localization

length of the entanglement cut. So the entanglement entropy for MBL eigenstates is going to obey

some kind of area law.

What do we know about the MBL phase transition? The existence of the MBL phase (exis-

tence of l-bits) was proven to all orders in perturbation theory in a local interaction V , including

higher dimensions, and almost proven including non-perturbative effects in 1D lattice models with

exponentially decaying interactions. There are lost of open questions; possible non-perturbative

instabilities in higher dimensions, with longer ranged interactions, etc. There is lots of numerical

evidence for existence of the thermal phase (but no proof). This is given by a dynamical phase

transition to a thermalizing phase as a function of disorder strength/interaction strength...

5.4 Properties of the MBL phase

If we have these τ bits that commute with H, if we were to prepare some initial state with

some definite value on the τi, that value cannot change. This is why MBL systems are said to have

“quantum memory.” The approach to equilibrium is a slow power law because of slow “dephasing”

dynamics.

MBL eigenstates have an area law entanglement. Product states have zero entanglement,

“dressed” l-bits only have local correlations. For A a subsystem in a bath B, only the boundary

spins are entangled, whereas for a thermal state, B is a bath for all spins in A. Naturally, low

entanglement gives efficient representations. One order parameter for MBL, since transport isn’t

a good one, is entanglement entropy.

MBL exists as its own well-defined concept, independent of transport and conserved quantities.
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The dynamics of entanglement offer a good description of the MBL system. In thermalizing

systems, entanglement grows as a power law in time:

S(t) ∝ t (79)

In localization, we get a logarithmic growth of entanglement in time, coming from dephasing. If

H = Jijzizj , if we have:

↑↑, S(t) = 0 (80)

↑↗, S(t) = 0 (81)

↖↗= (c1 ↑ +c2 ↓), (c′1 ↑ +c′2 ↓) (82)

where↗ represents a precession. If we have a precession on spin j, there is an effective field acting

on spin j which cares about spin i. If spin i is up, spin j precesses a different way than if spin i were

down. So the neutral precession cares about the other spin, which is dephasing. In summation,

we have
Thermalizing MBL

ETH obeyed Not obeyed

Volume law entanglement Area law

Dynamics of entanglement is Poly(t) S(t) ∼ log(t)

DC transport could be 0 if there are Griffiths effects No DC transport

All local information is lost Forms local “quantum” memory
The transition between the two is a major research problem.

6 l-bit Picture of MBL

The standard approach to many-body physics is to study the ground state properties (τ = 0

properties). Our local Hamiltonian is given by

H =
∑
i

Hi (83)

In plotting the energy spectrum, we have a gap ∆ from the ground state to the next state. This

many-body bandwidth is extensive in system size ∼ O(V ), but the number of states is exponential

N ∼ eV . Only the ground state is protected by this gap ∆ ∼ O(1). The ground state contains the

most pronounced quantum effects. In quantum entanglement, if we have a gapped ground state,
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the entanglement region of subsystem A SA scales with |∂A|, the “Area law.” The spins on ∂A

are coupled to spins in the bath only up to a finite correlation length ξ(∆). If we have a gapless

ground state (we find these at critical points) SA ∼ log(|A|). If we have thermal eigenstates at

some finite temperature (finite energy density E/L), then SA ∼ |A| (obeys a volume law). This

looks classical, and A is completely decohered.

We study phases and phase transitions by studying (classifying) gapped ground states. From

here we can get topological order, symmetry breaking, etc, classify gapped ground states with or

without symmetries present. With this framework we can create a landscape of phases; regions of

phases in parameterspace. In deforming parameters, we ask how we can deform while keeping a

gap. We say these hamiltonians are considered to be in the same phase. To pass between phases

we must cross over a gapless region. See 7.

Parameter

Parameter

Phase 1

Phase 2

Phase 3
Phase 4

Figure 7: Phase landscape.

Definition 9. Quasi-adiabatic continuity (Hastings-Wen, 2005) As long as the gap doesn’t

close when mapping between sets of parameters λ0, λ1, there exists a local unitary transformation
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which relates the ground states

|ψλ1
〉 ≈ Vλ |ψλ0

〉 (84)

with finite error in expectation values of local observables.

This unitary V “dresses,” or “smears,” local observables into quasi-local observables

Õiλ = V †OiV (85)

The gap ∆ comes hand-in-hand witha finite correlation length ξ, i.e.

〈ψ0|OxOy |ψo〉 ∼ e−|x−y|/ξ (86)

so as long as the scale in which our operators are getting smeared is comparable to ξ, we’ll still

capture the correlations accurately.

Definition 10. Local V is often called finite depth unitary. See ??.

V≈

V12 V34 V56

D

Figure 8: Quantum circuit.

Definition 11. In terms of D in the diagram, we have a bound on how fast our correlations can

spread in space, given by the Lieb-Robinson speed vLR.

Suppose we start with some operator on site 3, and act on it with the first layer of unitaries.

Everything outside of this V34O3V
†
34 operation hasn’t been touched by this operator O3, so it is
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just the identity. Then we act on it by the next layer of unitaries, which have preimage affected by

the V †, V , so with the next layer the operator has spread to sites 5 and 6. So we get a light-cone,

seen in ??.

V34

V †34

O

Figure 9: Light cone in a quantum circuit.

In particular, if our circuit has a finite depth D, our operator cannot grow in size any more than

D from where it started.

Remark 10. When acting with this unitary transformation, while the ground state is protected by

a gap, the states in the middle of the spectrum will in general mix “like crazy” with one another:

∆λ−O(1) >> e−V (87)

so there is no notion of adiabatic continuity.

Remark 11. This has only been proven in 1D, but is expected to hold in 2D.

Example 2. For the Transverse Field Ising Model (TFIM), we have

H = −J
∑
i

σzi σ
z
i+1 − h

∑
σxi (88)

we have a phase transition at h/J = 1, where we have a paramagnet for h/J > 1 and a ferromagnet
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otherwise, where the gap goes to 0 at this critical point. When h = 0, we have eigenstates

|ψ0
±〉 = |↑ ... ↑〉 ± |↓ ... ↓〉 (89)

The power of Hasting and Wen’s theorem is that, when h << 1, there exists a Vh with

|ψh±〉 = V |ψ0
±〉 (90)

σ̃zj
˜
σi,zh = Vhσ

z
i σ

z
jV
†
h (91)

since we need Ising-even operators to act on these states, and we have

˜
σi,zh

˜
σj,zh |ψ

h
±〉 = 1 (92)

This formalism says that we have an operator that dresses our operators and eigenstates.

The question of localization is: Is there any way in which highly excited states can resemble

gapped ground states (and not thermalize)? Quantum coherence at high energies corresponds to

new kinds of order (localization-protected quantum order). We can evade thermalization at high

enery densities. One way to do this is to have extensively many symmetries.

Example 3. H0 = h
∑
i σ

z
i . This model is certainly not thermal: [H0, σ

z
i ] = 0, |n〉 = |↑↓ ... ↓〉

are product states in the z basis. S = 0 for any cuts. We can take all 2L states. This isn’t very

interesting, because it’s extremely unstable to the addition of small perturbations. Hλ := H0 +H1,

where

H1 = J
∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + ... (93)

we can write this in terms of creation and annihilation operators

H = J
∑

σ†iσi+1 + σiσ
†
i+1 + ... (94)

Under spin flips our states mix, get delocalized eigenstates, and high entanglement (with interac-

tions). See ??.
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|↑↑ ... ↑〉
|↑↓ ... ↑〉
|↑↓ ... ↓↑〉...

(
L
2

)
∼ L2

L

1

Figure 10: Energy for H =
∑
i hiσ

z
i .

Now let’s add disorder:

Example 4. H0 =
∑
i hiσ

z
i +
∑
〈ij〉 Jijσ

z
i σ

z
j + ..., disordered with disorder strength W . We perturb

with H1. H1 allows flip flops between nearest neighbors. For a flip

|n〉 → σ+
i σ
−
i+1 |n〉 (95)

∆H0 ∼ O(W ) (96)

There is no resonance if J << W . This is a detuning between states in Hilbert space.

When we have a thermalizing system, and a dense many-body spectrum, we can take two states

and create an avoided level-crossing. The local properties of neighboring eigenstates are similar.

We have a matrix element between these neighboring eigenstates

M.E. = 〈En+1|H1 |En〉 ∼ Je−S/2 (97)

∆E ∼ e−S ;S ∝ V ⇒ (98)

M.E. >> ∆E (99)

For the localized system, the local properties of neighboring eigenstates is very different. For

H0 =
∑
hiσ

z
i ,

|En〉 = |↑↓ ... ↑↑〉 (100)

|En+1〉 = |↓↓ ... ↑↓〉 (101)

If we flip we get an energy difference of order W .

Definition 12. The mobility gap is the typical energy difference between states that differ only

in a local subregion.
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So, what even are l-bits, and how do we construct them? If we know for a diagonalizable H we

have

V †HV = Hdiag (102)

|Ei〉 = V |ei〉 (103)

where |ei〉 are the basis states in the z basis |↑↓ ... ↑〉. Let

V = (v1, v2, ..., v2L) (104)

ταi = V σαi V
† (105)

where ταi is the dressed operator (l-bit) and σαi is the bare (physical) spins (p-bit).

τzi |Ei〉 = ± |Ei〉 (106)

= V σzi V
†V |ei〉 (107)

= ±V |ei〉 (108)

= ± |Ei〉 (109)

This means that [H, τzi ] = 0,∀i, and H can be written in terms of these τ :

H = h̃iτ
z
i + J̃ijτ

z
i τ

z
j + J̃ijkτ

z
i τ

z
j τ

z
k + ... (110)

at no point have we assumed anything about thermalization, many-body localization, etc. All we

started with was a V that diagonalizes the Hamiltonian.

Definition 13. For MBL, V can be made local with MBL! This is a precise definition of MBL.

When τ is local, the fact [H, τzi ] = 0 is emergent integrability.

Remark 12. The basis in which H is diagonal need not be the local naiive computational basis.

Traditionally we had

H = HAnderson +HInteraction (111)

= hiσ
z
i +XX + Y Y +HInteraction (112)

=
∑
α

eαd
†
αdα + V

∑
αβγδ

d†αd
†
βdγdδ (113)
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where d†αdα are Anderson eigenstates, and we transform ↑ to an occupied Anderson orbital and ↓

is unoccupied, and τzi = σzi . Thus the basis in which we diagonalize depends of the problem.

6.1 Implications

The Hamiltonian is given by

H = h̃iτ̃i + J̃ijτ
z
i τ

z
j + J̃ijkτ

z
i τ

z
j τ

z
k + ... (114)

and J̃ij are exponentially decaying.

Remark 13. We are considering very local interactions. A large part of the motivation to consider

interactions is because a real solid has Coulomb interactions which are not local.

The implications are:

1. The eigenstates are product states of τzi : τzi |En〉 = ±1 |En〉. If we make an entanglement

cut |↑↓↑ | ↓ ... ↑〉τz , the states overlap in their tails as in Figure ??.

|↑↓↓ ... ↑ | ↓ ... ↑↑〉

Figure 11: Overlap of state |↑↑↓ ... ↑ | ↓ ... ↑〉 over our entanglement cut.
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and we get an area law. This is one of the best known diagnostics of MBL: highly excited

eigenstates in the middle of the spectrum have area-law entanglement similar to gapped

ground states.

2. Because [τzi , H], 1
DTr[τ

z
i σ

α
i ] ∼ O(1). Dressed operators have finite overlap with physical

operators. If we plot Oi(t) vs. time as in , we find that it approaches some value C0 > 1 and

it stays there forever. See 12.

O(t)

t

C0 > 1

Figure 12: O(t): Quantum memory of an operator.

This is quantum memory, i.e. lack of thermalization. Even if we wait infinitely long in an

infinitely large system, this observable will remember its initial condition. Experimentally,

one can always object to the inevitable finiteness in system size and time. This is a valid

objection, and we’re not sure if eventually this phenomenon breaks down.

3. ETH is not obeyed.

4. There is no level repulsion. Eigenstates can just pass through each other and obey Poissonian

statistics.

5. Slow dephasing dynamics. Log-growth of entanglement entropy.

In the “Standard Model” of thermodynamics, we have

H =
∑
i

hiσ
z
i + J

∑
(σzi σ

z
i+1 + σxi σ

x
i+1 + σyi σ

y
i+1) (115)

with hi ∈ [−W,W ]. The phase transition at a value in W/J is a huge, exciting area of research for

a bunch of reasons:
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1. It is based on dynamics, not thermodynamics. Dynamics are tied to the properties of indi-

vidual eigenstates.

2. It entails a restoration of statistical mechanics. The transition goes from where statmech

works to where it doesn’t.

3. It is a transition which looks like a quantum to classical phase transition.

4. It is driven by a singular change in the entanglement properties in individual MB eigenstates.

6.2 Log-growth of entanglement

For a system with a subregion A in a region B, we have a Hilbert space

H = HA ⊕HB (116)

|ψ〉 =

DA∑
i=1

DB∑
j=1

cij |i〉A |j〉B (117)

where DA = dim(HA). We do a singular value decomposition to get

R∑
n=1

√
pn |m〉A |n〉B (118)

where R is the rank of this cij matrix, and
∑
n pn = 1, and SV N (A) = SV N (B) = −Tr[ρA log ρA]

(with ρA = TrB [|ψ〉 〈ψ|]) and therefore SV N (A) = −
∑
n pn log pn. More generally we have Renyi

entropy:

Sα =
1

1− α
log(

∑
n

pαn) (119)

For a generic local chaotic system, we expect

SV N (t) ∝ t (120)

In a thermalizing disordered system, transport can be subdiffusive due to Griffiths effects. If our

transport is subdiffusive, we know σDC(t) = 0. With these effects,

S(t) ∼ tα, α < 1 (121)
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(growth of entropy is sublinear) This is growing by entanglement velocity, bounded by the Lieb-

Robinson speed (see the lightcone section).

Hl−bit =
∑
i

Jijσ
z
i σ

z
j + hiσ

z
i (122)

where Jij ∼ e|i−j|/ξ. For 2 sites, we have

H = Jσz1σ
z
2 (123)

We consider families of initial states. Suppose

1. |ψ0〉 = |↑↑〉 , |↓↓〉 , |↑↓〉 , |↓↑〉. Here there is no entanglement.

2. |ψ0〉 = |↑〉 · (α |↑〉 + β |↓〉). The second spin feels an effective field. So effectively we have

|↑〉 · (J(1) + σz2), which isn’t entangled.

3. |ψ0〉 = (α |↑〉+β |↓〉)⊗(α |↑〉+β |↓〉). Now, depending on what one spin is doing, the other spin

wants to do different things. This generates entanglement between spins 1 and 2. Explicitly,

|ψ0〉 =

cosα

sinα


1

⊗

cosα

sinα


2

(124)

|ψ(t)〉 =



cos2 αeiJt

cosα sinαe−iJt

cosα sinαe−iJt

sin2 αeiJt


(125)

ρA(t) =

 cos2 α cosα sinα(e2iJt cos2 α+ e−2iJt sin2 α)

cosα sinα(e2iJt cos2 α+ e−2iJt sin2 α) sin2 α


(126)
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For α = π
4 , we have

|ψ0〉 =

 1√
2

1√
2

⊗
 1√

2

1√
2

 (127)

ρA(t) =

 1
2

1
2 cos(2Jt)

1
2 cos(2Jt) 1

2

 (128)

so S(t) is maximized if Jt = π
4 ; the off-diagonal entries go to zero. More generally, when

Jt ∼ O(1).

Going to the MBL problem, we have a whole bunch of spins with some entropy cut. There is an

effective interaction between two spins across this cut that are r apart.

H = J0e
−r/ξσzi σ

z
i+r (129)

= Jeffσ
z
i σ

z
i+1 (130)

when Jeff t ∼ 1, the entanglement is maximized, i.e. when log(J0t) ∼ r. In an actual MBL system

we have a whole lot of couplings, so the off-diagonal entries in H are f(t), which contain many

different incommensurate frequencies. Graphing the entropies, we get the figure 13.

S|A|

S(t)

t

S(t)

t

Figure 13: Entropies of different-sized systems.

where we can see that the entropy saturates as some value s|A|, and thus obeys a volume law, and

0 < s < log(2), and s depends on the initial state. A toy model “Standard model” for the MBL
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Figure 14: MBL phase diagram.

phase transition is

H =
∑
i

hiσ
z
i + J

∑
σ · σ (131)

= H0 +H ′ (132)

where hi ∈ [−W,W ]. We work the locator limitW >> J . We see that when J = 0, the eigenstates

are just product states of σz:

|ψα〉 = |↑↓ ... ↑↑〉 , (133)

[H0, σ
z
i ] = 0 (134)

More generally, if we allow for a certain amount of hopping, in the locator limit, we get locally

dressed operators τzi , locally dressed versions of our σ operators:

[τzi , H] = 0 (135)

τzi = V †σzi V (136)

where V is local unitary. The phase diagram looks like Figure 14. notice that the y isn’t in

temperature. Even though the energy density is conjugate to temperature, temperature only

makes sense in thermal equilibrium.
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Definition 14. As a function of energy density, we have a many body mobility edge, because

some states are localized and some that are thermalizing. The states that are thermalizing are

usually in the middle of the many-body spectrum, so they’re at energy densities that would have

corresponded to infinite temperature if the system were allowed to thermalize, because in the middle

of the many-body spectrum, we have many more chances of making these resonances that are

destabilizing.

What is known about this phase transition? We know the existence of Anderson localization.

We have

1. Perturbative stability of Anderson localization to all orders in the interaction strength. This

is true as long as the interactions are small enough (for all spatial dimensions and power law

interactions), but this ignores non-perturbative instabilities.

2. Existence of l-bits. For large enough W in 1D, with exponentially decaying interactions. On

the W scale, we know that high up there exists anMBL phase, and lower there is an ergodic

phase, so somewhere between there is an MBL phase transition.

Definition 15. Critical scaling is the idea that, near a phase transition, there are universal

properties about this phase transition that only care about some basic features about e.g. spatial

dimension, nature of interaction, but all microscopic details can be course-grained.

7 Floquet Systems

In floquet systems we have

H(t+ nT ) = H(T ), n ∈ Z (137)

where T is called the period and ω = 2π
T is the frequency. This gets rid of energy conservation,

because of the time dependence in the hamiltonian (There is no notion of a ground state). However,

we will use something new called “quasienergy” to extract important information from the system.

Remark 14. The most general setting is a system coupled to some environment, and the system

and environment together undergo unitary evolution. The environment is usually traced even to

give some (generally non-hermitian) evolution for the system ρs(t). However, to simplify, we

assume that the role of the environment is only to modulate the Hamiltonian periodically in time.
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However, the time evolution of the system is still treated as unitary:

U(t, t0) = τe
−i

∫ t
t0
dtH(t) (138)

7.1 Floquet Formalism

Let’s step back and think about Bloch’s theorem, about electrons in a periodic potential:

V (r) = V (r + T ), T = nxâx + nyây + ... (139)

The eigenstates are

ψa,k(r) = eik·run(r) (140)

which has a plane wave factor and periodic function un(r) = un(r+T ), where n is the band index.

Momentum here is no longer conserved. Instead k is called “quasimomentum.” This lies in the

Brillouin Zone, k ∈ [−πa ,
π
a ]. The time-dependent Schrodinger equation is

id |ψ(t)〉
dt

= H(t) |ψ(t)〉 (141)

for H(t) a Floquet hamiltonian. The solutions are the “Floquet Eigenstates,” and can be written

as

|ψα(t)〉 = e−iEαt |φα(t)〉 (142)

where Eα is the quasienergy in the Floquet Brillouin zone Eα ∈ [− π
T ,

π
T ], and |φα(t)〉 is a periodic

function |φα(t+ T )〉 = |φα(t)〉. We have that Eα = Eα + nω.

|ψα(T )〉 = U(T ) |ψα(0)〉 = e−iEαT |ψα(0)〉 (143)

Thus |ψα(0)〉 is an eigenstate eigenvalue e−iEαT . Notice that this is invariant under Eα → Eα+ 2πn
T .

Stroboscopically, t = nT . So

U(nT ), {|α〉 , e−iEαnT } (144)
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These form a complete basis for expanding any |ψ(nT )〉. More generally,

|ψ(t)〉 = e−iEαt |φα(t)〉 (145)

These form a complete basis for time evolution at any t. Notice that

Ut0(T ) = τe−i
∫ T+t0
t0

dtH(t), 0 ≤ t0 < T (146)

U(0, T ) = U†(0, t0)U(T + t0, t0)U(t0, 0) (147)

(time evolution from the first argument to the second argument). U(T ) can be used to formally

define a floquet Hamiltonian HF .
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