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I. THE SACHDEV-YE-KITAEV MODEL

The Sachdev-Ye-Kitaev model (SYK) is written in terms of N Majorana fermions Ψi, for N even.
The Sachdev-Ye-Kitaev model is defined by the Hamiltonian

H =
1

4!

∑
a,b,c,d

Jabcdψaψbψcψd =
∑

a<b<c<d

Jabcdψaψbψcψd (1)

for ψ Majorana fermions and Jabcd the anti-symmetric coupling tensor, and each independent ele-
ment J···· is a random real number chosen from a Gaussian distribution with average 〈J····〉 = 0 and

variance dependent on parameter J : 〈J2
····〉 = 3!J2

N3 . The Hilbert space dimension is L = 2N/2. In the
limit N →∞, the model can be solved for any βJ := λ. The SYK model has an emergent conformal
symmetry, making it a “nearly” 1-dimensional conformal field theory (CFT1) and is thus is a toy
model for “nearly” AdS/“nearly” CFT (NAdS2/NCFT1), a version of traditional AdS/CFT where
we relate quantum-mechanical systems with quantum gravity systems in certain limits. This model
can be solved at large N and large βJ in the 1

N
expansion. We define the spectral form factor:

g(t) :=
〈Z(β + it)Z∗(β − it)〉J

〈Z(β)〉2J
(2)

and study its behavior, shown in Figure 1.
In the region before the dip time, we can understand this curve gravitationally in the 1

N
expansion.

In the region after the dip time, we can understand this curve in the 1
L

expansion using random
matrix theory (RMT). In this report, we discuss the both expansions. In the former region, because
g(t) is self-averaging, rather than thinking about the average of the square, we can just think about
the average 〈Z(β + it)〉J . The computation of this quantity is very involved, and we sketch this
calculation; in the report, we provide explicit computations for several key steps.

II. NAdS2/NCFT1 CORRESPONDENCE FOR SYK

We rewrite the disorder average of the spectral form factor in terms of bilocal antisymmetric fields,
integrate out the Gaussian couplings Jijkl, integrate out the fermions via a lagrange multiplier field,
and consider the saddle point of the resulting action. By introducing and integrating out fluctuations
in these bilocal fields, we get an exactly-solvable symplectic integral with action exactly that of
Dilaton gravity.

〈Z(β + it)〉J =

∫
Diff(S1)/SL(2,R)

dΩ exp{ N

(β + it)J

∫
Sch(φ, τ)dτ} (3)

where Sch is the Schwartzian derivative used in Dilaton gravity.

III. ANALYTIC RAMP FOR A GUE RANDOM MATRIX HAMILTONIAN

If we compute 〈Z〉 for an (L×L) GUE random matrix as our Hamiltonian, the curve to the right
of the dip time looks quite similar to the same region in Figure 1. This is made explicit in the
report.
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FIG. 1: log-log plot of g(t) for the SYK model. The time of min[g(t)] is known as the “dip time,” and the two time regions before
and after this dip time are effectively described by different effective theories, with respective order perturbations. Source: A.
Lau.

IV. ANALYTIC RAMP FOR SYK

We then analytically derive the ramp behavior of the SYK model, starting with the general
definition of ZZ∗, taking GUE statistics and using the effective Schwartzian derivative theory to
find a numerical solution that looks fairly close to the exact solution mentioned (which exists). We
derive this in the report.
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What are the quantum dynamics of black holes? Does such a system follow quantum-chaotic behavior at late times? In this
report we use the Sachdev-Ye-Kitaev Model (SYK) to give some guidance for these questions. The SYK model is a

frequently studied model in physics due to its relationship with black holes. Here we illustrate what the SYK model is and
why it can be used to model black holes at late times. We then characterize its behavior in certain limits and conclude that
the late time behavior of this model, and therefore late time behavior of horizon fluctuations in large anti-de Sitter (AdS)

black holes, are governed by random matrix dynamics, a hallmark of a quantum chaotic system. The main tool we’ll use for
this argument is the spectral form factor which uses an analytically continued partition function in order to establish this

connection.

V. THE SACHDEV-YE-KITAEV MODEL

The Sachdev-Ye-Kitaev model (SYK) is written in
terms of N Majorana fermions Ψi, for N even.

Definition 1. Majorana fermions satisfy the algebra

ψiψj + ψjψi = 2δij , i, j ∈ {1, ..., N} (4)

where N is even. These live in a Hilbert space of dimen-
sion L = 2N/2. We treat the ψis as L×L representations
of this algebra.

Example 1. For N = 2, we have

ψ1 =

(
1 0
0 −1

)
ψ2 =

(
0 1
1 0

)
(5)

Definition 2. The Sachdev-Ye-Kitaev model is de-
fined by the Hamiltonian

H =
1

4!

∑
a,b,c,d

Jabcdψaψbψcψd (6)

=
∑

a<b<c<d

Jabcdψaψbψcψd (7)

for a, b, c, d ∈ {1, ..., N}. Jabcd is the anti-symmetric
coupling tensor, and each independent element J···· is a
random real number chosen from a Gaussian distribu-
tion with average 〈J····〉 = 0 and variance dependent on

parameter J : 〈J2
····〉 = 3!J2

N3 . The 3!
N3 factor is just for

normalization convenience; the important part is the de-
pendence on J .

Remark 1. The most general form of the Hamiltonian
introduces a parameter q, representing the interactions of
q of the N fermions at a given time:

H = i
q
2

∑
1≤i1≤...≤iq≤N

ji1,...,iqψi1 ...ψiq (8)

where

〈j2i1,...,i1〉 =
J2(q − 1)!

Nq−1 (9)

The numerical factors and factors of N are used to sim-
plify the large N limit, and the i factor is to make the
Hamiltonian hermitian when q ≡ 2 mod (4). Notice
that, if we have odd q

2 , the model is not time-reversal-
symmetric. For this reason we consider q = 4, as this
model represents the dominant interactions at low en-
ergy.

We can see that, since there is no spatial dependence,
this models a (0+1)-dimensional quantum mechanical
system. In the limit N → ∞, the model can be solved
for any βJ := λ. The Sachdev-Ye-Kitaev model has an
emergent conformal symmetry and is thus is a toy model
for “nearly” AdS/“nearly” CFT, a version of traditional
AdS/CFT where we relate quantum-mechanical systems
with quantum gravity systems in certain limits. It is
thus a model of a system living in 0-space and 1-time,
and it is related to a quantum gravity system in 1-space
and 1-time. This model can be solved at large N and
large βJ in the 1

N expansion. The way to do this is
to integrate over the couplings J···· and taking the dis-
order average, that is the average over the ensemble of
random couplings. This results in a complicated theory
with large parameter N , which allows one to solve it in an
expansion in 1

N . One can show that correlation functions

in this model in the 1
N expansion agree with correlation

functions of fields propagating in a 2-dimensional black
hole. If we analytically continue the partition function
Z(β) = Tr[e−βH ] to β + it, we get

Z(β + it) = Tr[e−βH−iHt] (10)

=

L∑
m=1

e−βEm−iEmt (11)

If t is small, we are summing positive quantities. But
as t grows, we are summing different phases, which give
partial cancellations in the sum, so Z(β+it) will decrease
in time. Z(β + it) does not, however, decrease to zero.
It will become small but still oscillate, and at very large
times it will have recurrences back to its original value.

Remark 2. In computing the quantity Z(β + it) in the
2-dimensional gravity theory, we run into trouble. We
believe that black holes are finite-entropy quantum sys-
tems, and for finite-entropy quantum systems this quan-
tity should not go to 0. But in the perturbative expansion
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FIG. 2: g(t) for N = 34, L = 217, βJ = 5. Single and averaged
over 90 samples. Source: A. Lau.

in the gravitational theory, it turns out that Z(β + it)
does go to 0. This is an example of the black hole in-
formation problem. As of now this is a major problem
in theoretical physics.

We seek to understand Z(β+it) in the SYK model. We
want to compute this quantity in the disorder average:
〈Z〉J . Here there is a problem, however. We have a
continuous spectrum, and this quantity can and does go
to zero. We rectify this by noticing that, for a given
realization of the model, the typical value of Z(β + it)
will not be zero.

Definition 3. Instead we define the spectral form fac-
tor:

g(t) :=
〈Z(β + it)Z∗(β − it)〉J

〈Z(β)〉2J
(12)

and this should not go to zero.

Cotler et. al. in1 compute g(t) for N = 34, L =
217, βJ = 5 using 90 independent samples. The result
is a figure like that of Figure 2.

The initial plateau is of order g(t) ∼ L2; there are no
phases in the sum, and we sum up L terms, and square it
to get g(t). The initial drop is referred to as the slope, the
minimum is referred to as the dip, the increase is referred
to as the ramp, and the plateau is just the plateau. At
the plateau g(t) ∼ L, and this occurs at time t ∼ L. The
time of the dip is not known. The graph in blue is the
qualitative behavior of a single J . The oscillations are
of order the function itself (the function is self-averaging
until the dip time).

In the region before the dip time, we can understand
this curve in the 1

N expansion. In the region after the dip

time, we can understand this curve in the 1
L expansion.

First we discuss the former expansion. In this region,
because g(t) is self-averaging, rather than thinking about
the average of the square, we can just think about the
average 〈Z(β+it)〉J . The computation of this quantity is
very involved; we outline the calculation as in3, specifying
explicit calculations for several steps.

VI. NAdS2/NCFT1 CORRESPONDENCE FOR
SYK

Definition 4. We define the Euclidean propagator as

G(τ) = 〈T (ψ(τ)ψ(0))〉 (13)

= 〈ψ(τ)ψ(0)〉θ(τ)− 〈ψ(0)ψ(τ)〉θ(−τ) (14)

and the bilocal function

G(τ1, τ2) = G(τ1 − τ2) (15)

At large N this field is equal to the two-point function of
the fermions

G(τ1, τ2) =
1

N

N∑
i=1

〈ψi(τ1)ψi(τ2)〉 (16)

Definition 5. We define the self energy Σ(τ, τ ′) by

Σ(τ, τ ′) = Σ(τ − τ ′), (17)

1

G(ω)
= −iω − Σ(ω), (18)

Σ(τ) = J2[G(τ)]3 (19)

At β = ∞, we take ω to be continuous, and at finite β,
we take ω = 2π

β (n+ 1
2 ).

At strong coupling, we ignore the first term in (18) to
get the approximation∫

dτ ′G(τ, τ ′)Σ(τ ′, τ ′′) = −δ(τ − τ ′) (20)

Σ(τ, τ ′) = J2[G(τ, τ ′)]3 (21)

Under the reparametrization τ 7→ f(τ), we see that

J2

∫
| df
dτ ′
|dτ ′G(f(τ), f(τ ′))G(f(τ ′), f(τ ′′))3 (22)

= −δ(f(τ)− f(τ ′′)) = − 1

|f ′(τ ′′)|
δ(τ − τ ′′) (23)

Thus this equation is invariant under the reparametriza-
tion group Diff(R). The ansatz for G is

Gc(τ) =
b√
|τ |
sgn(τ) (24)

for b a parameter determined by inserting this ansatz
into the simplified equations. The exact solution of
this form has its Diff(R) symmetry spontaneously bro-
ken by SL(2,R), and we compactify R to S1 by the
reparametrizations f(τ) 7→ e2πiτ/β , giving us the sym-
plectic manifold Diff(S1)/SL(2,R). Such symmetry
makes the SYK model a nearly conformal field the-
ory, or NCFT1. This gives rise to duality with nearly
anti-de Sitter spaces, and thus NAdS2/NCFT1 duality.

The computation of 〈Z(β + it)〉J is very involved, and
we give a sketch here of the computation performed by
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Maldacena and Stanford in3, with a few explicit calcu-
lations. We compute the disorder average of 2 copies
(replicas) of the partition function, labeled by α, β=1,2:

〈Z(β + it)Z(β − it)〉J (25)

=

∫
Dψαi DJijkl exp{−a

∑
ijkl

J2
ijkl} (26)

× exp{−
2∑

α=1

∫
dτ(

1

2

∑
i

ψαi
d

dτ
ψαi (27)

− 1

4!

∑
ijkl

Jijklψ
α
i ψ

α
j ψ

α
kψ

α
l )} (28)

where α is the replica index and a is an (unimportant in
the long run) parameter. Because Jijkl is a Gaussian, we
perform the integration

∫
DJijkl exp{

∑
α

∑
ijkl

[
1

4!

∫
dτJijklψ

α
i ψ

α
j ψ

α
kψ

α
l − aJ

2
ijkl]} (29)

= exp{
a4!

4(4!)2a2

∑
αβ

∫
dτ1dτ2(

N∑
i=1

1

N
ψ
α
i (τ1)ψ

β
i (τ2))

4} (30)

= exp{
J2N

8

∑
αβ

∫
dτ1dτ2(

N∑
i=1

1

N
ψ
α
i (τ1)ψ

β
i (τ2))

4} (31)

where the last inequality follows from the fact that there
are 4! terms for any fixed ijkl and the antisymmetry
of Jijkl and the anticommutation of the ψi fields. Our
expression becomes

〈Z(β + it)Z(β − it)〉J = (32)∫
Dψαi exp{−1

2
(

2∑
α=1

N∑
i=1

∫
dτψαi

d

dτ
ψαi (33)

−J
2N

4

∑
αβ

∫
dτ1dτ2(

N∑
i=1

1

N
ψαi (τ1)ψβi (τ2))4)} (34)

This gives a bilocal action for the fermions. We can inte-
grate out the fermions if we introduce a field G̃αβ(τ1, τ2)

and set it equal to 1
N

∑N
i=1 ψ

α
i (τ1)ψβi (τ2). The moti-

vation for this is the fact that the above contains an
O(N) symmetry via ψiψ

i 7→ ψOOTψ = ψiψ
i. To in-

troduce this into our path integral, we use the analogous
δ(x) =

∫
dkeikx:

δ(G̃αβ(τ1, τ2)− 1

N

N∑
i=1

ψαi (τ1)ψβi (τ2)) ∝ (35)

∫
dΣ̃αβ(τ1, τ2) exp{−N

2

αβ∑
(τ1, τ2)(G̃αβ(τ1, τ2) (36)

− 1

N

N∑
i=1

ψαi (τ1)ψβi (τ2))} (37)

where Σ̃αβ(τ1, τ2) acts as a Lagrange multiplier. Insert-

ing this into our expression yields

〈Z(β + it)Z(β − it)〉J (38)

=

∫
DψiDG̃αβDΣ̃αβ exp{ (39)

−
2∑

αβ=1

N∑
i=1

1

2

∫
dτ1dτ2[ψαi (τ1) (40)

× (δαβδ(τ1 − τ2)− Σ̃αβ(τ1, τ2))ψβi (τ2)] (41)

− 1

2

∑
αβ

∫
dτ1dτ2(N Σ̃αβ(τ1, τ2)G̃αβ(τ1, τ2) (42)

− J2N

4
(G̃αβ(τ1, τ2))4)} (43)

Integrating out the fermions, we have∫
Dψαi exp{ (44)

−
N∑

αβ=1

N∑
i=1

1

2

∫
dτ1dτ2[ψαi (τ1)(δαβδ(τ1 − τ2)∂τ (45)

−Σ̃αβ(τ1, τ2))ψβi (τ2)]} (46)

= exp{N
2

∑
αβ

log det(δαβ∂τ − Σ̃αβ)} (47)

yielding our new expression

〈Z(β + it)Z(β − it)〉J = (48)∫
DG̃αβDΣ̃αβ exp{N

2

∑
αβ

log det(δαβ∂τ − Σ̃αβ)} (49)

× exp{1

2

∑
αβ

∫
dτ1dτ2(N Σ̃αβ(τ1, τ2)G̃αβ(τ1, τ2) (50)

−J
2N

4
(G̃αβ(τ1, τ2))4)} (51)

Next we assume a replica symmetric saddle point G̃αβ =
δαβG̃. Plugging this in, we get

〈Z(β + it)Z(β − it)〉J (52)

=

∫
DG̃DΣ̃ exp{−M(−N

2
log det(∂τ − Σ̃) (53)

+
1

2

∫
dτ1dτ2(N Σ̃(τ1, τ2)G̃(τ1, τ2 (54)

− J2N

4
(G̃(τ1, τ2))4)} (55)

Here we define fluctuations σ, g such that

G̃ = G+
g

|G|
, Σ̃ = Σ + |G|σ (56)

The measure is invariant dG̃dΣ̃ = dgdσ. We expand the
action to second order in g and σ and using the saddle
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point equation G = (∂τ − Σ)−1, we get the action

S =
N

12J2

∫
dτ1...dτ4σ(τ1, τ2)J23|G(τ1 − τ2)| (57)

×G(τ1 − τ3)G(τ2 − τ4)|G(τ3 − τ4)|σ(τ3, τ4) (58)

+
1

2

∫
dτ1dτ2[g(τ1, τ2)σ(τ1, τ2)− 1

2
J23g(τ1, τ2)2]

(59)

Integrating out σ, we get

S =
J23N

4
g([|G(τ1 − τ2)| (60)

×G(τ1 − τ3)G(τ2 − τ4)|G(τ3 − τ4)|]−1 − 1)g (61)

Now we go to low energies (the low-temperature limit)
and use the conformal expressions Gc,Σc. By including
the leading non-conformal term in the above action, we
consider a small reparametrization τ 7→ τε(τ) and evalu-
ate the action on δεGc. The result is

S = N
α

J

∫ β

0

dτ
1

2
[(ε′′)2 − (

2π

β
)2(ε′)2] (62)

where α is a constant. Generalizing to finite
reparametrizations τ 7→ φ(τ), we take the expansion

φ(τ) = φ(0) + φ′(0)(τ +
1

2

φ′′(0)

φ′(0)
τ2 + ...) (63)

Thus, plugging in
∫
dτ(ε′′)2 7→

∫
dτ(φ

′′

φ′ )2. This, up to a

total derivative, gives the action as

S = −N α

J

∫
dτ(

φ′′′

φ′
− 3

2
(
φ′′

φ′
)2) (64)

With this action S, we finally get

〈Z(β + it)〉J = (65)∫
X

dΩ exp{ N

(β + it)J

∫
Sch(φ, τ)dτ} (66)

where Sch(φ, τ) is the Schwartzian derivative φ′′′

φ′ −
3
2 (φ

′′

φ′ )2 and φ(τ) ∈ X = Diff(S1)/SL(2,R).

Remark 3. This functional integral can be computed ex-
actly via the Duistermaat-Heckman theorem. It is an in-
tegral over a symplectic manifold of an exponential of a
generator of a U(1)-symplectomorphism of that manifold.
The integrals are then easy to compute:

〈Z(β + it)〉J (67)

=

∫
X

dΩ exp{ N

(β + it)J

∫
Sch(φ, τ)dτ} (68)

=
1

[(β + it)J ]
3
2

e
N

(β+it)J (69)

This action is exactly the theory of our 2-dimensional
black hole; the entire Dilaton gravity theory is ex-
actly this integral over the Schwartzian derivative. This
AdS/CFT calculation establishes the link between these
fermions and the black hole.

The partition function 〈Z(β+ it)〉J at large values of t

behaves proportionally to t−
3
2 . Squaring this expression

yields t−3, and it turns out that this explains the region
of the curve before the dip time quite closely, so therefore
this region can be explained gravitationally. It remains
to explain the region of the curve post dip time. This
can be explained by random matrix theory (RMT).

VII. ANALYTIC RAMP FOR A GUE RANDOM
MATRIX HAMILTONIAN

If we compute 〈Z〉 for an (L × L) random matrix as
our Hamiltonian, the curve to the right of the dip time
looks quite similar to the same region in Figure 2. The
SYK model has a particle-hole symmetry

P = K

Nd∏
i=1

(ci + ci) (70)

with K an anti-linear operator.

Remark 4. The ensemble of the random matrix depends
on N ; it is periodic mod 8:

1. When N ≡2 or 6 mod(8), P symmetry maps even
and odd parity sectors to each other. The sectors
do not have anti-lineary symmetry, and the corre-
sponding ensemble is GUE.

2. When N ≡ 0 mod(8), P maps the sectors to them-
selves with P 2 = 1. The corresponding ensemble is
GOE.

3. When N ≡ 4 mod(8), P still maps the sectors to
themselves, but this time with P 2 = −1. The cor-
responding ensemble is GSE.

Remark 5. While to the left of the dip time the curve
for a random matrix doesn’t agree with that of the SYK
result, it has the same behavior of t−3. The reason for
this is that the behavior can just be described by the mean
density of eigenvalues, which vanishes like a square root
for the random matrix. Plugging in this vanishing be-
havior to compute Z translates to the power β−

3
2 , so the

square root vanishing of the density of states gives similar
behavior. Below we make this explicit.

The GUE ensemble of Hermitian matrices M of rank
L has the ensemble average given by

ZGUE =

∫ ∏
i,j

dMij exp{−L
2
Tr[M2]} (71)

Remark 6. The natural perturbative parameter in SYK
is 1

N , while in RMT we expand in 1
L ∼ e

−N
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The partition function for such an M is then

Z(β, t) = Tr[e−βM−iMt] (72)

with the usual spectral form factor

g(t) =
〈Z(β + it)Z(β − it)〉J

〈Z(β)〉2J
(73)

In the large L limit, we can describe the eigenvalues by
physical density ρ(λ) and unit normalized density ρ̃(λ) :=
ρ(λ)
L . To make this precise, we have∫

dλρ(λ) = L (74)∫
dλρ̃(λ) = 1 (75)

This gives us a new way to write ZGUE :

ZGUE =

∫
Dρ̃(λ)e−S , (76)

S = −L
2

2

∫
dλρ̃(λ)λ2 (77)

+L2

∫
dλ1dλ2ρ̃(λ1)ρ̃(λ2) log |λ1 − λ2| (78)

For large L, S has a saddle point given by the Wigner
semicircle law:

〈ρ(λ)〉GUE = ρ̃s(λ) ≡ 1

2π

√
4− λ2 (79)

Remark 7. Notice that here the average eigenvalue spac-
ing is 1

L .

In plotting the spectral form factor along time, we sim-
ilarly get a slope, dip, ramp, and plateau. Before the dip
time, g(t) is dominated by the disconnected piece given
by

gd(t) =
〈Z(β + it)〉J · 〈Z(β − it)〉J

〈Z(β)〉2J
(80)

We first study the behavior when this term dominants
(pre-dip time). To simplify calculations, we work in in-
finite temperature β = 0, although the resulting expres-
sion is also true at finite temperature. We have

〈Z(0 + it)〉GUE =

∫ 2

−2
dλLρ̃s(λ)e−iλt =

LJ1(2t)

t
(81)

where J1 is a Bessel function of the first kind. At late
times the partition function decays as L

t3/2
, so we get

gd(t) =
|〈Z(0 + it)〉J |2

L2
(82)

∼ 1

t3
(83)

Thus the late time decay of g(t) pre-dip time is ∼ 1
t3 .

This is because ρ̃s(λ) vanishes as a square root near the
edge of the spectrum.

Post-dip time, g(t) is dominated by

gc(t) := g(t)− gd(t) (84)

FIG. 3: log-log plot of g(t) for GUE random matrices.
Produced in1 by treating two samples of the eigenval-
ues of 212−dimensional matrices as a single sample of a
213−dimensional matrix. Source: A. Lau.

Remark 8. In this post-dip time domain, g(t) and gc(t)
are almost equal, but gc(t)’s ramp extends to very early
times, giving better perturbative control.

Again working in infinite temperature (β = 0), we
write

gc(t) =

∫
dλ1dλ2R2(λ1, λ2)ei(λ1−λ2)t (85)

where we define

R2(λ1, λ2) := 〈δρ̃(λ1)δρ̃(λ2)〉GUE (86)

is the connected pair correlation function of the unit-
normalized density ρ̃, with δρ̃(λ) = ρ̃(λ) − ρ̃s(λ) the
fluctuation around the mean eigenvalue via the Wigner
semicircle law.

Definition 6. It is a result of RMT that near the center
of the Wigner semicircle R2(λ1, λ2) is given by the square
of the sine kernel plus a delta function:

R2(λ1, λ2) = − sin2(L[λ1 − λ2])

(πL[λ1 − λ2])2
+

1

Lπ
δ(λ1 − λ2) (87)

Notice that our expression for gc(t) is a Fourier trans-
form. Taking the Fourier transform of both of these
terms, we get

gc(t) ∼
t

2πL2
for t < 2L, (88)

∼ 1

πL
for t ≥ 2L (89)

This explains the plot in Figure 3.

Remark 9. One can do this without an appeal to the
sine kernel; one can derive

R2(λ1, λ2) ≈ − 1

2(πL(λ1 − λ2))2
(90)

perturbatively from the action.
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VIII. ANALYTIC RAMP FOR SYK

To analytically derive the ramp behavior of the SYK
model, we start with the general definition of ZZ∗:

〈Z(β + it)Z(β − it)〉 (91)

=

∫
dλ1dλ2〈ρ(λ1)ρ(λ2)〉e−β(λ1+λ2)e−i(λ1−λ2)t (92)

We take GUE statistics

〈ρ(λ1)ρ(λ2)〉 = 〈ρ(E)〉δ(λ1 − λ2) (93)

+〈ρ(λ1)〉〈ρ(λ2)〉(1− sin2[π〈ρ(E)〉(λ1 − λ2)]

[π〈ρ(E)〉(λ1 − λ2)]2
) (94)

This gives us

〈Z(β + it)Z(β − it)〉 = |〈Z(β + it)〉|2 (95)

+

∫
dEe−2βEmin(

t

2π
, 〈ρ(E)〉) (96)

Next we use the effective Schwartzian derivative theory:

Z(β) =

∫
X

dΩ exp{−NπαS
βJ

∫ 2π

0

Sch(φ, τ)dτ} (97)

where αS is a numerical coefficient depending on q = 4,
X is the symplectic manifold Diff(S1)/SL(2,R), and J
sets the scale of the Hamiltonian for different values of q.

Definition 7. We define the specific heat c by

c =
4π2αS
J

(98)

The classical and 1-loop contributions to this action
are given by

Z1−loop(β) =
#

(βJ )3/2
exp{2π2NαS

βJ
} (99)

Remark 10. The theory turns out to be 1-loop exact.
The proof of this is found in4.

We take into account the soft mode integral by dividing
the saddle-point expression for the partition function by
a factor of (β + it)3/2 (in the large N limit). The large
N free energy limit in the holographic is given by

logZ = N(ε0β + s0 +
c

2β
) (100)

we find that the disconnected term gd(t) contributes

|〈Z(β + it)〉|2

〈Z(β)〉2
=

β3

(β2 + t2)3/2
exp{− cNt2

β(β2 + t2)
} (101)

Observe that the dependence on the exponent becomes
negligible when at t ≈>

√
N and we have a power law

decay ∼ 1
t3 .

FIG. 4: log-log plot of g(t) for the exact diagonalization so-
lution and the numerical solution. Source: A. Lau.

Remark 11. While this behaves similarly to the GUE
random matrix Hamiltonian above, the actual numerical
solution does not match that of the SYK model. However,
the ramp matches quite similarly, as we express below.

To evaluate the second term in (70), we use the so-
lution S(E) of the Schwinger-Dyson equations. In the
holographic limit, however, we have

S(E) = Ns0 +
√

2c(E − E0)N (102)

When we neglect 1-loop factors from the integral over E,
we get

gramp(t) ∼
t

2π
exp[−2Ns0 −

cN

β
] (103)

for t
2π < eNs0 ,

gramp(t) ∼
t

2π
exp[−2Ns0 −

cN

β
− β

cN
log2(

t

2πeNs0
)]

(104)

for eNs0 < t
2π <

tp
2π , and

gramp(t) ∼ exp[−Ns0 −
3cN

4β
] (105)

for tp < t, where tp = 2πeNs0+
cN
2β . This numerical so-

lution looks fairly close to the exact solution mentioned
above, but it is unknown how the true large N answer
for g(t) behaves. In Figure 4 the numerical and exact
solutions are sketched.

IX. CONCLUSION

We conclude that the late time behavior of the SYK
model, and therefore late time behavior of horizon fluc-
tuations in large anti-de Sitter (AdS) black holes, are
governed by random matrix dynamics, a hallmark of a
quantum chaotic system.
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