
Topological Quantum Computation Problems
Alec Lau

In spring 2018, Shawn X. Cui taught an excellent seminar on topological quan-
tum computation, and these were the homework problems.

Contents
1 Logical operators in toric code 1

2 𝑉𝑔𝑠 is an error-correcting code 5

3 Braiding statistics of quasi-particles in toric code 7

4 Single-particle excitation on a torus 7

5 Local operators interpreted as ribbon operators 12

6 Excitation types can be locally measured 14

7 Non-abelian Aharonov-Bohm effect 17

8 Quantum double model for ℤ2 21

1 Logical operators in toric code
Question. In class, we studied string operators 𝑆𝑍(𝑡) and 𝑆𝑍(𝑡′) where 𝑡 and 𝑡′

are string operators on the lattice and dual lattice, respectively. By definition,
𝑆𝑍(𝑡) acts by Pauli 𝑍 on each edge of 𝑡 and by identity otherwise. Similarly,
𝑆𝑋(𝑡′) acts by Pauli 𝑋 on each edge crossed by 𝑡′ and by identity otherwise. Con-
sider the case where both 𝑡, 𝑡′ are closed strings. Let 𝑉𝑔𝑠 be the ground state space.

1



• Show that 𝑆𝑍(𝑡) and 𝑆𝑋(𝑡′) preserve 𝑉𝑔𝑠 for arbitrary closed strings 𝑡, 𝑡′.
Moreover, show that the action of these operators on 𝑉𝑔𝑠 only depends on
the isotopy class of the strings. In particular, this means if a closed string is
contractible, the corresponding string operator acts by identity on ground
states.

• By the previous result, there are four string operators of 𝑍−type which are
{𝑆𝑍(∅), 𝑆𝑍(𝑚), 𝑆𝑍(𝑙), 𝑆𝑍(𝑚∪𝑙)}, where ∅ is the empty string or any con-
tractible string, 𝑚 is a loop along the horizontal direction, and 𝑙 is a loop
along the vertical direction. See Figure 4. Similarly, there are four strings
of 𝑋−type, {𝑆𝑋(∅), 𝑆𝑋(𝑚), 𝑆𝑋(𝑙), 𝑆𝑋(𝑚 ∪ 𝑙)}. Let

�̂�1 = 𝑆𝑍(𝑚), �̂�2 = 𝑆𝑍(𝑙), (1)
�̂�1 = 𝑆𝑋(𝑙′), �̂�2 = 𝑆𝑋(𝑚′) (2)

Show that on the ground states the commutation relations between the opera-
tors {�̂�1, �̂�2, �̂�1, �̂�2} behave like the usual Pauli operators {𝑍1, 𝑍2, 𝑋1, 𝑋2}.
These operators are the logical operators.

• Show that the space of logical operators, i.e. those preserving 𝑉𝑔𝑠, is gen-
erated as an algebra by {�̂�1, �̂�2, �̂�1, �̂�2}. (Hint: the space of all operators
on a physical qubit has a basis given by {𝐼𝑑, 𝑋, 𝑍, 𝑋𝑍}.)

Proof. • The Hamiltonian on toric code is given by

𝐻 ∶= ∑
𝑣∈𝑉

(1 − 𝐴𝑣) + ∑
𝑝∈𝐹

(1 − 𝐵𝑝) (3)

for

𝐴𝑣 ∶= (⊗𝑒∈𝑠𝑡𝑎𝑟(𝑣)𝑋) ⊗ (⊗𝑒∈𝐸−𝑠𝑡𝑎𝑟(𝑣)𝐼𝑑), (4)
𝐵𝑝 ∶= (⊗𝑒∈𝜕𝑝𝑍) ⊗ (⊗𝑒∈𝐸−𝜕𝑝𝐼𝑑) (5)

and 𝐹 the set of plaquettes, 𝐸 is the set of edges, and 𝑉 the set of vertices.
Thus the ground state 𝑉𝑔𝑠 is given by

𝑉𝑔𝑠 = {|𝜓⟩ ∈ ℋ𝑇 2 = ⊗𝑒∈𝐸ℂ2 ∶ 𝐴𝑣 |𝜓⟩ = |𝜓⟩ , 𝐵𝑝 |𝜓⟩ = |𝜓⟩ , ∀𝑣 ∈ 𝑉 , 𝑝 ∈ 𝐹 }
(6)
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Figure 1: Closed strings in the lattice and dual lattice on the torus.

First off, we examine the commutators [𝐴𝑣, 𝑆𝑍(𝑡)], [𝐵𝑝, 𝑆𝑍(𝑡)], [𝐴𝑣, 𝑆𝑋(𝑡′)],
and [𝐵𝑝, 𝑆𝑋(𝑡′)] for 𝑡, 𝑡′ closed loops. If 𝑡 is a closed loop, every vertex in 𝑡
must be connected to an even number of edges in 𝑡; a vertex in 𝑡 connected to
an odd number of edges in 𝑡 would be a boundary of 𝑡, which is supposed to
be closed. If 𝑣 is a vertex that isn’t in 𝑡, then 𝐴𝑣 must commute with 𝑆𝑍(𝑡),
as they are acting on different tensor factors. If 𝑣 is a vertex in 𝑡, it is adja-
cent to either 2 or 4 edges in 𝑡. Thus every vertex in 𝑡 has an even number
of 𝑍 operators in the tensor product. By inspection, 𝑋𝑍 = −𝑍𝑋, so we
have 𝐴𝑣𝑆𝑍(𝑡) = (−1)2,4𝑆𝑍(𝑡)𝐴𝑣 = 𝑆𝑍(𝑡)𝐴𝑣, i.e. [𝐴𝑣, 𝑆𝑍(𝑡)] = 0, ∀𝑣 ∈ 𝑡
as well. Furthermore, since 𝐵𝑝 only consists of 𝑍 operators and identity
operators, and so does 𝑆𝑍(𝑡), [𝐵𝑝, 𝑆𝑍(𝑡)] must be 0 for all 𝑝 ∈ 𝐹 .
Similarly, for a plaquette 𝑝 ∈ 𝐹 in 𝑡′, there can either be 2 or 4 dual edges
in 𝑝, and thus either 2 or 4 edges in 𝜕𝑝. By the same reasoning as above,
𝑆𝑋(𝑡′)𝐵𝑝 = (−1)2,4𝐵𝑝𝑆𝑋(𝑡′) = 𝐵𝑝𝑆𝑋(𝑡′), so [𝐵𝑝, 𝑆𝑋(𝑡′)] = 0, ∀𝑝 ∈ 𝑡′.
Similarly, 𝐴𝑣 is comprised only of 𝑋 operators and identity operators, and
so is 𝑆𝑋(𝑡′), so [𝐴𝑣, 𝑆𝑋(𝑡′)] must be 0 for all 𝑝 ∈ 𝐹 . Note that this is true
independently of the closed strings 𝑡, 𝑡′.
Let |𝜓⟩ be a ground state, and define |𝜙⟩ ∶= 𝑆𝑍(𝑡) |𝜓⟩ , |𝜙′⟩ ∶= 𝑆𝑋(𝑡′) |𝜓⟩.
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From before, we have

𝐴𝑣 |𝜙⟩ = 𝐴𝑣𝑆𝑍(𝑡) |𝜓⟩ = 𝑆𝑍(𝑡)𝐴𝑣 |𝜓⟩ = 𝑆𝑍(𝑡) |𝜓⟩ = |𝜙⟩ (7)
𝐵𝑝 |𝜙⟩ = 𝐵𝑝𝑆𝑍(𝑡) |𝜓⟩ = 𝑆𝑍(𝑡)𝐵𝑝 |𝜓⟩ = 𝑆𝑍(𝑡) |𝜓⟩ = |𝜙⟩ (8)

and

𝐴𝑣 |𝜙′⟩ = 𝐴𝑣𝑆𝑋(𝑡′) |𝜓⟩ = 𝑆𝑋(𝑡′)𝐴𝑣 |𝜓′⟩ = 𝑆𝑋(𝑡′) |𝜓⟩ = |𝜙′⟩ (9)
𝐵𝑝 |𝜙′⟩ = 𝐵𝑝𝑆𝑋(𝑡′) |𝜓⟩ = 𝑆𝑋(𝑡′)𝐵𝑝 |𝜓⟩ = 𝑆𝑋(𝑡′) |𝜓⟩ = |𝜙′⟩ (10)

Thus 𝑆𝑍(𝑡), 𝑆𝑋(𝑡′) preserve 𝑉𝑔𝑠, if 𝑡, 𝑡′ are closed strings.
Consider 𝑆𝑍(𝑡) |𝜓⟩. We can deform the action of 𝑆𝑍(𝑡) by acting by 𝐵𝑝
on 𝑆𝑍(𝑡) where at least one edge in 𝜕𝑝 is in 𝑡. This deforms 𝑡 around the
plaquette 𝑝, because it acts by 𝑍 on the edges around 𝑝 where 𝑡 wasn’t, and
cancels out the edges around 𝑝 where 𝑡 already was, because 𝑍2 = 𝐼𝑑.
Similarly, we can deform the path of 𝑡′ by acting by 𝐴𝑣 on 𝑆𝑋(𝑡′) where
at least one edge adjacent to 𝑣 is crossed by an edge in 𝑡′. This deforms 𝑡′

around the vertex 𝑣, because it acts by 𝑋 on the dual edges around 𝑣 where
𝑡′ wasn’t, and cancels out the dual edges around 𝑣 where 𝑡′ already was, by
acting on such edges twice with 𝑋, and thus acting on such edges by the
identity. See the Figure 2 for an example.
Thus if we get 𝑡2 by a deformation on 𝑡1, we have 𝑆𝑍(𝑡2) = 𝐵𝑝1 ...𝐵𝑝𝑛𝑆𝑍(𝑡2)
for some plaquettes 𝑝𝑖, 𝑖 ∈ {1, ..., 𝑛}. Thus, for |𝜓⟩ a ground state, we have

𝑆𝑍(𝑡2) |𝜓⟩ = 𝐵𝑝1 ...𝐵𝑝𝑛𝑆𝑍(𝑡1) |𝜓⟩ = 𝑆𝑍(𝑡1) |𝜓⟩ (11)
𝑆𝑋(𝑡′

2) |𝜓⟩ = 𝐴𝑣1 ...𝐴𝑣𝑛𝑆𝑋(𝑡′
1) |𝜓⟩ = 𝑆𝑋(𝑡′

1) |𝜓⟩ (12)

so although the operators 𝑆𝑋 , 𝑆𝑍 change with isotopy, their action on 𝑉𝑔𝑠 is
preserved.
Up to isotopy, 𝑚 intersects 𝑙′ on only one edge of the lattice, as well as 𝑙 and 𝑚′.
Thus the commutation relations between �̂�1, �̂�1 and �̂�2, �̂�2 come down to their
action on that one edge (�̂�1 and �̂�2 need not intersect, and the same goes for �̂�2
and �̂�1). Since their actions are 𝑍 and 𝑋, they must obey the same commutation
relations as {𝑍1, 𝑍2, 𝑋1, 𝑋2}.
Since the space of all operators on a qubit is generated by {𝑍, 𝑋}, and {�̂�1, �̂�2, �̂�1, �̂�2}
is isomorphic as an algebra to {𝑍1, 𝑍2, 𝑋1, 𝑋2}, the space of logical operators is
generated by {�̂�1, �̂�2, �̂�1, �̂�2}.
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Figure 2: Deformation of loops.

2 𝑉𝑔𝑠 is an error-correcting code
Question. Let the square lattice ℒ in the definition of toric code have size 𝐿 × 𝐿,
namely, there are 𝐿 edges in the shortest non-contractible loop both along the
horizontal direction and along the vertical direction. Let

𝑃 ∶= ∏
𝑣∈𝑉

𝐼𝑑 + 𝐴𝑣
2 ∏

𝑝∈𝐹

𝐼𝑑 + 𝐵𝑝
2 (13)

Namely, 𝑃 is the projector onto the ground space 𝑉𝑔𝑠. Let𝒪 be any operator acting
on less than 𝐿 qubits, namely, 𝒪 acts nontrivially on at most 𝐿 − 1 qubits. Show
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that

𝑃 𝒪𝑃 = 𝛼𝒪 𝑃 , (14)

for some scalar 𝛼𝒪 . (𝑉𝑔𝑠 is an error-correcting code which corrects errors on
arbitrary ⌊𝐿−1

2 ⌋ qubits. (Hint: it suffices to show this equation for a basis of the
space of operators acting on at most 𝐿 − 1 qubits. A basis for this space is given
by

{∏
𝑒∈𝐸

𝒫𝑒 ∶ 𝒫𝑒 ∈ {𝐼𝑑, 𝑋, 𝑍, 𝑋𝑍}, and at most 𝐿 − 1 𝒫 ′
𝑒 𝑠 are not trivial} (15)

Proof. Each edge in ℒ is the side of two plaquettes and belongs to the star of two
vertices. Thus, for each edge qubit 𝑒 in some state [... ⊗ 𝑒 ⊗ ...], we have

(2𝐼𝑑
2 )𝑛6(𝐼𝑑 + 𝑋

2 )(2𝐼𝑑
2 )𝑛5(𝐼𝑑 + 𝑋

2 )(2𝐼𝑑
2 )𝑛4⋅ (16)

(2𝐼𝑑
2 )𝑛3(𝐼𝑑 + 𝑍

2 )(2𝐼𝑑
2 )𝑛2(𝐼𝑑 + 𝑍

2 )(2𝐼𝑑
2 )𝑛1 (17)

acting on 𝑒, with 𝑛𝑖 ∈ {0, ..., 𝐿2 − 2} depending on the order of ennumerating the
vertices and plaquettes. This action on each 𝑒 becomes

(𝐼𝑑 + 𝑋
2 )(𝐼𝑑 + 𝑋

2 )(𝐼𝑑 + 𝑍
2 )(𝐼𝑑 + 𝑍

2 ) = (𝐼𝑑 + 𝑋
2 )(𝐼𝑑 + 𝑍

2 ) (18)

= (𝐼𝑑 + 𝑋 + 𝑍 + 𝑋𝑍
4 ) ∶= 𝑃𝑒 (19)

For each edge, we have

𝑃𝑒𝐼𝑑𝑃𝑒 = 𝐼𝑑 + 𝑋 + 𝑍 + 𝑋𝑍
8 = 1

2𝑃𝑒 (20)

𝑃𝑒𝑋𝑃𝑒 = 𝑃𝑒𝑃𝑒 = 𝐼𝑑 + 𝑋 + 𝑍 + 𝑋𝑍
8 = 1

2𝑃𝑒 (21)

𝑃𝑒𝑍𝑃𝑒 = 𝐼𝑑 + 𝑋 + 𝑍 + 𝑋𝑍
8 = 1

2𝑃𝑒 (22)

𝑃𝑒𝑋𝑍𝑃𝑒 = −𝐼𝑑 + 𝑋 + 𝑍 + 𝑋𝑍
8 = −1

2𝑃𝑒 (23)

Thus, tensoring all the 𝑃𝑒s together to form 𝑃 , we get

𝑃 𝒪𝑃 = 𝛼𝒪 𝑃 (24)

where 𝛼𝒪 is a product of scalar multiples of 1
2 .
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3 Braiding statistics of quasi-particles in toric code
Question. In class, we have shown that there are four types of quasi-particles, the
vacuum 1, the electric charge 𝑒, the magnetic charge 𝑚, and the composite 𝑒𝑚 of
an electric charge with a magnetic charge. Consider a pair of electric charges 𝑒,
and denote the state of such configuration by

|𝜓𝑖𝑛⟩ = 𝑆𝑍(𝑡) |𝜖⟩ (25)

where |𝜖⟩ is some ground state. If we swap the two particles in counterclockwise
direction, then the state becomes

|𝜓𝑓𝑖⟩ = 𝑆𝑍(𝑡′) |𝜖⟩ (26)

But since 𝑡 and 𝑡′ can be deformed to each other, we have |𝜓𝑖𝑛⟩ = |𝜓𝑓𝑖⟩. Hence
the electric charge 𝑒 is a boson. Similarly, the magnetic charge 𝑚 is also a boson.
However, show that the composite 𝑒𝑚 is a fermion.

Proof. I assume that an 𝑒𝑚 charge on the lattice is a site (adjacent vertex and dual
vertex) on the lattice. Exchanging the 𝑒𝑚 sites involves composing the paths creat-
ing the quasiparticles with a loop where the vertices of said loop are the locations
of the particles:

|𝜓𝑒𝑚⟩ ∶= 𝑆𝑋(𝑡′)𝑆𝑍(𝑡) |𝜖⟩ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒−−−−−−→𝑆𝑋(𝑡′ ∪ 𝑡′
𝑙𝑜𝑜𝑝)𝑆𝑍(𝑡 ∪ 𝑡𝑙𝑜𝑜𝑝) |𝜖⟩ (27)

=𝑆𝑋(𝑡′)𝑆𝑋(𝑡′
𝑙𝑜𝑜𝑝)𝑆𝑍(𝑡)𝑆𝑍(𝑡𝑙𝑜𝑜𝑝) |𝜖⟩ (28)

=𝑆𝑋(𝑡′)𝑆𝑋(𝑡′
𝑙𝑜𝑜𝑝)𝑆𝑍(𝑡) |𝜖⟩ (29)

= − 𝑆𝑋(𝑡′)𝑆𝑍(𝑡)𝑆𝑋(𝑡′
𝑙𝑜𝑜𝑝) |𝜖⟩ (30)

= − 𝑆𝑋(𝑡′)𝑆𝑍(𝑡) |𝜖⟩ (31)
= − |𝜓𝑒𝑚⟩ (32)

since trivial (dual) loops act by identity on |𝜖⟩ ∈ 𝑉𝑔𝑠, and𝑆𝑍(𝑡) intersects𝑆𝑋(𝑡′
𝑙𝑜𝑜𝑝)

once, since the vertices are adjacent, and thus they anticommute. Since the ex-
change operator gives a phase factor of -1, 𝑒𝑚 charges are fermions.

4 Single-particle excitation on a torus
Recall Kitaev’s quantum double model based on a finite group 𝐺 on a torus. For ℒ
an arbitrary lattice on the torus, we fix an orientation and associated to each edge
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Figure 3: Operators used to construct the Hamiltonian, for 𝑔, ℎ ∈ 𝐺

the Hilbert space ℂ[𝐺] for a total Hilbert space on ℒ denoted by ℋ𝑡𝑜𝑡. We denote
the set of all vertices 𝑉 and the set of all plaquettes 𝐹 . For each site 𝑠 = (𝑣, 𝑝) (for
each vertex we associate the plaquette to its upper right) we have the operators:
We further define

𝐴(𝑣) ∶= 1
|𝐺| ∑

𝑔∈𝐺
𝐴𝑔(𝑣), 𝐵(𝑝) = 𝐵𝑒(𝑣, 𝑝) (33)

and then define the Hamiltonian by

𝐻 = ∑
𝑣∈𝑉

(1 − 𝐴(𝑣)) + ∑
𝑝∈𝐹

(1 − 𝐵(𝑝)) (34)

where the ground state is

𝑉𝑔𝑠 = {|𝜓⟩ ∈ ℋ𝑡𝑜𝑡 ∶ 𝐴(𝑣) |𝜓⟩ = |𝜓⟩ , 𝐵(𝑝) |𝜓⟩ = |𝜓⟩} (35)

Question. Single-particle excitations cannot occur on the sphere, but they can
occur on the torus. Consider a square lattice on the torus. All horizontal edges
are oriented to the right and all vertical edges are oriented upward. Let 𝐺 be
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a finite group and let 𝑎, 𝑏 ∈ 𝐺 be two group elements which do not commute.
Let 𝑟 = 𝑎𝑏𝑎−1𝑏−1. Recall that on each edge lives a Hilbert space with the basis
{|𝑔⟩ ∶ 𝑔 ∈ 𝐺} and the total Hilbert space is the tensor product of the Hilbert space
on all edges. Let |𝜓⟩ be the basis state in the total Hilbert space whose value at
each edge is shown in Figure 7, and all other edges are labeled by 𝑒. Define

|𝜓𝑎,𝑏⟩ ∶= ∏
𝑣∈𝑉

𝐴(𝑣) |𝜓⟩ (36)

1. By definition, |𝜓𝑎,𝑏⟩ is stabilized by all 𝐴(𝑣)s. Let 𝑝0 be the plaquette on the
top right of the lattice. Show that

𝐵(𝑝) |𝜓𝑎,𝑏⟩ = |𝜓𝑎,𝑏⟩ , ∀𝑝 ≠ 𝑝0, (37)
𝐵(𝑝0) |𝜓𝑎,𝑏⟩ = 0 (38)

Thus |𝜓𝑎,𝑏⟩ is a state which violates only one constraint. Note that |𝜓𝑎,𝑏⟩ is
not the zero vector.

2. Let𝐶 be the conjugacy class containing 𝑟. Let 𝑣0 be a vertex on the boundary
of 𝑝0 and 𝑠0 = (𝑣0, 𝑝0) be a site. For each 𝑐 ∈ 𝐶 , define

|𝑐⟩ ∶= 𝐵𝑐(𝑠0) |𝜓𝑎,𝑏⟩ (39)

and let 𝑉 = 𝑠𝑝𝑎𝑛{|𝑐⟩ ∶ 𝑐 ∈ 𝐶}. Show that the states {|𝑐⟩ ∶ 𝑐 ∈ 𝐶} form a
basis of 𝑉 .

3. It is not hard to see that any state in 𝑉 is stabilized by all 𝐴(𝑣) and 𝐵(𝑝) for
which 𝑣 ≠ 𝑣0, 𝑝 ≠ 𝑝0. What is the action of the operators 𝐴𝑔(𝑠0) and 𝐵ℎ(𝑠0)
on 𝑉 ? Write it out under the basis {|𝑐⟩ ∶ 𝑐 ∈ 𝐶}. Conclude which irrep 𝑉
corresponds to. A state in 𝑉 represents an excitation on the single site 𝑠0.

Proof. 1. Every edge inℒ is hit twice by∏𝑣∈𝑉 . Due to the orientation of each
edge around every plaquette, when we order the edges clockwise around the
plaquette we get right multiplication by 𝑔 on one edge, and left multiplica-
tion by 𝑔 on the right edge, for every 𝑔 in the sum in 𝐴(𝑣), once all 𝑣s are
taken into account. Suppose a plaquette 𝑝’s state |𝑝⟩ has edges ℎ1, ℎ2, ℎ3,
and ℎ4 going clockwise around the plaquette, starting from the bottom edge.
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Figure 4: Lattice on a torus

Acting on ℒ by ∏𝑣∈𝑉 𝐴(𝑣), the Hilbert subspace around the plaquette be-
comes

∏
𝑣∈𝑉

𝐴(𝑣) |𝜓⟩ = 1
|𝐺|4 ∑𝑔1,𝑔2,𝑔3,𝑔4

(𝑔1ℎ1𝑔2 ⊗ 𝑔2ℎ2𝑔3 ⊗ 𝑔4ℎ3𝑔3 ⊗ 𝑔1ℎ4𝑔4)

(40)

This gives us

𝐵(𝑝) |𝜓𝑎,𝑏⟩ ∶= 𝐵𝑒(𝑝) |𝜓𝑎,𝑏⟩ = 1
|𝐺|4 ∑𝑔1,𝑔2,𝑔3,𝑔4

𝛿𝑒,𝑔1ℎ1𝑔2𝑔2ℎ2𝑔3𝑔3ℎ3 𝑔4𝑔4ℎ4 𝑔1
|𝜓𝑎,𝑏⟩

(41)

= 1
|𝐺|4 |𝐺|3

∑
𝑔1∈𝐺

𝛿𝑒,𝑔1ℎ1ℎ2ℎ3 ℎ4 𝑔1
|𝜓𝑎,𝑏⟩ (42)

In our particular labelling, all plaquettes except for 𝑝0 are of configuration
either 𝑒𝑒𝑒𝑒, 𝑎𝑒𝑎𝑒, or 𝑒𝑏𝑒𝑏, so the action of 𝐵(𝑝) for all 𝑝 ∈ 𝐹 except for 𝑝0
is the identity.
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The configuration on 𝑝0 is 𝑎𝑏𝑎𝑏, giving us

𝐵(𝑝0) |𝜓𝑎,𝑏⟩ = 1
|𝐺| ∑

𝑔∈𝐺
𝛿𝑒,𝑔𝑎𝑏𝑎 𝑏 𝑔 |𝜓𝑎,𝑏⟩ (43)

Since 𝑎, 𝑏 do not commute, 𝑒 ≠ 𝑔𝑎𝑏𝑎 𝑏 𝑔 for any 𝑔 ∈ 𝐺, and the state
becomes 0.

2. From the above calculation, we have

|𝑐⟩ ∶= 𝐵𝑐(𝑠0) |𝜓𝑎,𝑏⟩ = 1
|𝐺| ∑

𝑔∈𝐺
𝛿𝑐,𝑔𝑟𝑔 |𝜓𝑎,𝑏⟩ (44)

There is a unique set of 𝑔 ∈ 𝐺 such that, for a fixed 𝑐 ∈ 𝐶 , 𝑔𝑟𝑔 = 𝑐. Call
this set 𝐺𝑐 . Thus completely disjoint subsets of 𝐺 are kept in the sum for
each 𝑐 ∈ 𝐶 .
Let {𝑎𝑐 ∈ ℂ|𝑐 ∈ 𝐶} be such that

∑
𝑐∈𝐶

𝑎𝑐 |𝑐⟩ = 0 = ∑
𝑐∈𝐶

𝑎𝑐 ∏
𝑣∈𝑉

1
|𝐺| ∑

𝑔∈𝐺𝑐

𝐴𝑔(𝑣) |𝜓⟩ (45)

But since these are all different 𝑔s, the only {𝑎𝑐} set in which this is true is
𝑎𝑐 = 0 for all 𝑐 ∈ 𝐶 .

3. Fix a 𝑐 ∈ 𝐶 for now. We have

𝐴𝑔(𝑠0) |𝑐⟩ = 𝐴𝑔(𝑠0)𝐵𝑐(𝑠0) |𝜓𝑎,𝑏⟩ (46)
= 𝛿𝑔𝑐𝑔,𝑔𝑎𝑏𝑎 𝑏 𝑔𝐴𝑔(𝑠0) |𝜓𝑎,𝑏⟩ (47)
= 𝐵𝑔𝑐𝑔𝐴𝑔(𝑠0) |𝜓𝑎,𝑏⟩ (48)

= 𝐵𝑔𝑐𝑔𝐴𝑔(𝑠0) ∏
𝑣∈𝑉

1
|𝐺| ∑

𝑔′∈𝐺
𝐴𝑔′ |𝜓⟩ (49)

= 𝐵𝑔𝑐𝑔 |𝜓𝑎,𝑏⟩ (50)

since the action of𝐴𝑔(𝑠0) just rearranges the sumon 𝑣0 ∈ 𝑠0 for 1
|𝐺| ∑𝑔′∈𝐺 𝐴𝑔′ |𝜓⟩.

Thus

𝐴𝑔(𝑠0) |𝑐⟩ ↦ |𝑔𝑐𝑔⟩ (51)
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for all 𝑐 ∈ 𝐶 .
Next we look at 𝐵ℎ(𝑠0) |𝑐⟩. We have

𝐵ℎ(𝑠0) |𝑐⟩ = 𝐵ℎ(𝑠0)𝐵𝑐(𝑠0) |𝜓𝑎,𝑏⟩ (52)

For a plaquette 𝑝 with clockwise labels 𝑔1, 𝑔2, 𝑔3, and 𝑔4, starting from the
bottom label, we have

𝐵ℎ(𝑝)𝐵𝑐(𝑝) = 𝐵ℎ(𝑝)𝛿𝑐,𝑔1𝑔2𝑔3 𝑔4 (53)
= 𝛿ℎ,𝑔1𝑔2𝑔3 𝑔4𝛿𝑐,𝑔1𝑔2𝑔3 𝑔4 (54)
= 𝛿ℎ,𝑐𝛿𝑐,𝑔1𝑔2𝑔3 𝑔4 (55)
= 𝛿ℎ,𝑐𝐵𝑐(𝑝) (56)

Thus we have

𝐵ℎ(𝑠0) |𝑐⟩ = 𝛿ℎ,𝑐 |𝑐⟩ (57)

for all 𝑐 ∈ 𝐶 .
We now check what irreducible representation of the quantum double 𝑉
corresponds to. An irreducible representation of the quantum double corre-
sponds to (𝐶, 𝜒), where 𝜒 is an irreducible representation of the centralizer
of 𝑟. The Hilbert space corresponding to (𝐶, 𝜒) is given by

ℂ[𝐶] ⊗ 𝑉𝜒 (58)

Since𝑉 = ℂ[𝐶], the irreducible representation corresponding to𝑉 is (𝐶, 1).

5 Local operators interpreted as ribbon operators
Question. Let 𝑠 = (𝑣, 𝑝) be any site on a lattice. We show the local operators𝐴𝑔(𝑠)
and 𝐵ℎ(𝑠), ℎ, 𝑔 ∈ 𝐺 can be interpreted as ribbon operators for certain ribbons.
We start with 𝐵ℎ(𝑠). Let 𝑡𝑠 be a ribbon contained in the plaquette 𝑝, starting and
ending both at 𝑠. See Figure 5 (Left). It consists of four triangles of type-II (direct
triangles) 𝑡1, 𝑡2, 𝑡3, 𝑡4, and is directed in the order the triangles are listed. Assume
the edges on the boundary of 𝑝 are directed as shown in Figure 5 (Left) and a basis
state |𝑥1, 𝑥2, 𝑥3, 𝑥4⟩ is given. Then

𝐹 (ℎ,𝑔)(𝑡𝑖) |𝑥𝑖⟩ = 𝛿𝑔,𝑥𝑖 |𝑥𝑖⟩ (59)
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Figure 5: Lattice on a torus

By the inductive formula for ribbon operators

𝐹 (ℎ,𝑔)(𝑡1𝑡2) ∶= ∑
𝑘∈𝐺

𝐹 (ℎ,𝑘)(𝑡1)𝐹 (𝑘ℎ𝑘,𝑘𝑔)(𝑡2), (60)

we have

𝐹 (ℎ,𝑔)(𝑡1𝑡2) |𝑥1, 𝑥2⟩ = ∑
𝑘∈𝐺

𝐹 (ℎ,𝑘)(𝑡1) |𝑥1⟩ ⊗ 𝐹 (𝑘ℎ𝑘,𝑘𝑔)(𝑡2) |𝑥2⟩ (61)

= ∑
𝑘∈𝐺

𝛿𝑘,𝑥1𝛿𝑘𝑔,𝑥2
|𝑥1, 𝑥2⟩ (62)

= 𝛿𝑔,𝑥1𝑥2 |𝑥1, 𝑥2⟩ (63)

Inductively, it is not hard to see that

𝐹 (ℎ,𝑔)(𝑡𝑠) |𝑥1, 𝑥2, 𝑥3, 𝑥4⟩ = 𝛿𝑔,𝑥1𝑥2𝑥3𝑥4 |𝑥1, 𝑥2, 𝑥3, 𝑥4⟩ = 𝐵𝑔(𝑠) (64)

Similarly, let 𝜏𝑠 be a ribbon around the vertex 𝑣, starting and ending at 𝑠. It has
four triangles of type-I (dual triangles) 𝜏1, 𝜏2, 𝜏3, 𝜏4, and is also directed in the
order the triangles are listed. See Figure 5 (Right). Prove that

𝐹 (ℎ,𝑔)(𝜏𝑠) = 𝛿𝑔,𝑒𝐴ℎ(𝑠). (65)

Note that 𝐴ℎ(𝑠) actually only depends on 𝑣, hence the ribbon operator 𝐹 (ℎ,𝑔)(𝜏𝑠)
does not depend on the choice of the initial site.
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Proof. By the inductive formula for ribbon operators, we have

𝐹 (ℎ,𝑔)(𝜏𝑠) = ∑
𝑘∈𝐺

𝐹 (ℎ,𝑘)(𝜏1𝜏2𝜏3)𝐹 (𝑘ℎ𝑘,𝑘𝑔)(𝜏4) (66)

= ∑
𝑘∈𝐺

∑
𝑙∈𝐺

𝐹 (ℎ,𝑙)(𝜏1𝜏2)𝐹 (𝑙ℎ𝑙,𝑙𝑘)(𝜏3)𝐹 (𝑘ℎ𝑘,𝑘𝑔)(𝜏4) (67)

= ∑
𝑘∈𝐺

∑
𝑙∈𝐺

∑
𝑚∈𝐺

𝐹 (ℎ,𝑚)(𝜏1)𝐹 (𝑚ℎ𝑚,𝑚𝑙)(𝜏2)𝐹 (𝑙ℎ𝑙,𝑙𝑘)(𝜏3)𝐹 (𝑘ℎ𝑘,𝑘𝑔)(𝜏4) (68)

Since

𝐹 (ℎ,𝑔)(𝑡) |𝑥⟩ = 𝛿𝑔,𝑒 |ℎ𝑥⟩ (69)

This gives us

𝐹 (ℎ,𝑔)(𝜏𝑠) |𝑥1, 𝑥2, 𝑥3, 𝑥4⟩ = ∑
𝑘∈𝐺

∑
𝑙∈𝐺

∑
𝑚∈𝐺

𝛿𝑚,𝑒 |ℎ𝑥1⟩ ⊗ 𝛿𝑚𝑙,𝑒 |𝑚ℎ𝑚𝑥2⟩ (70)

⊗ 𝛿𝑙𝑘,𝑒 |𝑙ℎ𝑙𝑥3⟩ ⊗ 𝛿𝑘𝑔,𝑒 |𝑘ℎ𝑘𝑥4⟩ (71)
= |ℎ𝑥1⟩ ⊗ |ℎ𝑥2⟩ ⊗ |ℎ𝑥3⟩ ⊗ 𝛿𝑔,𝑒 |ℎ𝑥4⟩ (72)
= 𝛿𝑔,𝑒𝐴ℎ(𝑠) |𝑥1, 𝑥2, 𝑥3, 𝑥4⟩ (73)

6 Excitation types can be locally measured
Question. We know that an excitation in general occupies a site 𝑠 = (𝑣, 𝑝) and
the types of excitations are in one-to-one correspondence with irreps of 𝐷𝐺, the
quantum double of group 𝐺. Recall that the irreps 𝐼𝑟𝑟(𝐷𝐺) are characterized by
the pairs (𝐶, 𝜒), where 𝐶 is a conjugacy class with a pre-selected element 𝑟 ∈
𝐶 and 𝜒 is an irrep of 𝑍(𝑟), the centralizer of 𝑟. For each 𝑐 ∈ 𝐶 , arbitrarily
choose 𝑞𝑐 ∈ 𝐺 such that 𝑞𝑐𝑟𝑞𝑐 = 𝑐. Also recall that 𝐷𝐺 acts on the total Hilbert
space by the local operators 𝐷(𝑠) (recall that 𝐷(𝑠) is the algebra generated by
𝐴𝑔(𝑠), 𝐵ℎ(𝑠), 𝑔, ℎ ∈ 𝐺). We wish to find a set of elements

{𝑃(𝐶,𝜒) ∈ 𝐷𝐺 ∶ (𝐶, 𝜒) ∈ 𝐼𝑟𝑟(𝐷𝐺)} (74)
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which satisfy the following properties.

𝑃(𝐶,𝜒)𝑃(𝐶′,𝜒′) = 𝛿𝐶,𝐶′𝛿𝜒,𝜒′ , (75)

∑
(𝐶,𝜒)∈𝐼𝑟𝑟(𝐷𝐺)

𝑃(𝐶,𝜒) = 1, (76)

𝑃(𝐶,𝜒) acts on 𝑉(𝐶′,𝜒′) by 𝛿(𝐶,𝐶′)𝛿(𝜒,𝜒′). (77)

where we recall 𝑉(𝐶,𝜒) = ℂ[𝐶] ⊗ 𝑉𝜒 . If we have such a set of elements, then
their corresponding operators {𝑃(𝐶,𝜒)(𝑠)} in 𝐷(𝑠) form a complete set of orthogo-
nal projectors and hence can be used to construct a measurement. Moreover, the
projector 𝑃(𝐶,𝜒)(𝑠) precisely projects states to the irrep 𝑉(𝐶,𝜒). Verify that

𝑃(𝐶,𝜒) ∶= |𝜒|
|𝑍(𝑟)| ∑

𝑐∈𝐶
∑

𝑧∈𝑍(𝑟)
𝑇 𝑟(𝜒(𝑧))𝐵𝑐𝐴𝑞𝑐𝑧𝑞𝑐 (78)

gives the desired elements (|𝜒| is the dimension of the representation).

Proof. Recall that the Hilbert space of an excitation (𝐶, 𝜒) in the quantum double
model is given by

ℋ = {|𝑐⟩ ⊗ |𝑗⟩ ∶ 𝑐 ∈ 𝐶, 𝑗 = 1, ..., |𝜒|} (79)

and 𝐷(𝑠) acts on ℋ by

𝐵ℎ |𝑐⟩ ⊗ |𝑗⟩ = 𝛿ℎ,𝑐 |𝑐⟩ ⊗ |𝑗⟩ (80)
𝐴𝑔 |𝑐⟩ ⊗ |𝑗⟩ = |𝑔𝑐𝑔⟩ ⊗ 𝜒(𝑞𝑔𝑐𝑔𝑔𝑞𝑐) |𝑗⟩ (81)

= ∑
𝑖

𝜒(𝑞𝑔𝑐𝑔𝑔𝑞𝑐)𝑖𝑗 |𝑔𝑐𝑔⟩ ⊗ |𝑖⟩ (82)

From these it is easy to see that

𝐴𝑔𝐵ℎ = 𝐵𝑔ℎ𝑔𝐴𝑔, 𝐵ℎ1𝐵ℎ2 = 𝛿ℎ1,ℎ2𝐵ℎ2 , 𝐴𝑔1𝐴𝑔2 = 𝐴𝑔1𝑔2 (83)

By Schur Orthogonality, we have

∑
𝑧∈𝑍(𝑟)

𝜒(𝑧)𝑛𝑚𝜒′(𝑧)𝑛′𝑚′ = 𝛿𝜒,𝜒′𝛿𝑛,𝑛′𝛿𝑚,𝑚′
|𝑍(𝑟)|

|𝜒| (84)
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and since 𝑇 𝑟(𝜒(𝑧)) = ∑𝑖 𝜒(𝑥)𝑖𝑖, we can rewrite our expression for 𝑃(𝐶,𝜒). We
have, for |𝑗⟩ a basis vector in some irreducible representation 𝜒′,

𝑃(𝐶,𝜒) |𝑛⟩ ⊗ |𝑗⟩ = |𝜒|
|𝑍(𝑟)| ∑

𝑐∈𝐶
∑

𝑧∈𝑍(𝑟)
∑𝑚

𝜒(𝑧)𝑚𝑚𝐵𝑐 ∑
𝑖

𝜒′(𝑞𝑞𝑐𝑧𝑞𝑐𝑛𝑞𝑐𝑧 𝑞𝑐 𝑞𝑐𝑧𝑞𝑐𝑞𝑐)𝑖𝑗 |𝑞𝑐𝑧𝑞𝑐𝑛𝑞𝑐𝑧 𝑞𝑐⟩ ⊗ |𝑖⟩

(85)

= |𝜒|
|𝑍(𝑟)| ∑

𝑐∈𝐶
∑

𝑧∈𝑍(𝑟)
∑𝑚

𝜒(𝑧)𝑚𝑚 ∑
𝑖

𝜒′(𝑞𝑐𝑞𝑐𝑧𝑞𝑐𝑞𝑐)𝑖𝑗𝛿𝑐,𝑞𝑐𝑧𝑞𝑐𝑛𝑞𝑐𝑧 𝑞𝑐 |𝑞𝑐𝑧𝑞𝑐𝑛𝑞𝑐𝑧 𝑞𝑐⟩ ⊗ |𝑖⟩

(86)

= |𝜒|
|𝑍(𝑟)| ∑

𝑐∈𝐶
∑𝑚 ∑

𝑖
𝛿𝜒,𝜒′𝛿𝑚,𝑖𝛿𝑚,𝑗

|𝑍(𝑟)|
|𝜒| |𝑐⟩ ⊗ |𝑖⟩ (87)

= |𝜒|
|𝑍(𝑟)| ∑

𝑐∈𝐶
∑

𝑖
𝛿𝜒,𝜒′𝛿𝑖,𝑗

|𝑍(𝑟)|
|𝜒| |𝑐⟩ ⊗ |𝑖⟩ (88)

= ∑
𝑐∈𝐶

𝐵𝑐 |𝑛⟩ ⊗ 𝛿𝜒,𝜒′ |𝑗⟩ (89)

by Schur orthogonality.
Now we check the first property. For some state in ∑𝑐″∈𝐶″,𝑖∈|𝜒″| 𝑣𝑐″ |𝑐″⟩ ⊗
𝑣𝑖 |𝑖⟩ ∈ ℂ[𝐶″] ⊗ 𝑉𝜒″ , we have

𝑃(𝐶,𝜒)𝑃(𝐶′,𝜒′)𝑣 = ∑
𝑐∈𝐶

𝐵𝑐𝛿𝜒,𝜒″ ∑
𝑐′∈𝐶′

𝐵𝑐′𝛿𝜒′,𝜒″𝑣 (90)

= ∑
𝑐∈𝐶

𝛿𝑐,𝑐″𝛿𝜒,𝜒″ ∑
𝑐′∈𝐶′

𝛿𝑐′,𝑐″𝛿𝜒′,𝜒″𝑣 (91)

This is only nonzero if 𝜒″ = 𝜒 = 𝜒′ and 𝐶″ = 𝐶 = 𝐶′. If this is the case, we
have

𝑃(𝐶,𝜒)𝑃(𝐶′,𝜒′) = ∑
𝑐∈𝐶

𝛿𝑐(∑
𝑐∈𝐶

𝑣𝑐 |𝑐⟩ ⊗ ...) (92)

= ∑
𝑐∈𝐶

𝑣𝑐 |𝑐⟩ ⊗ ... (93)

Thus 𝑃(𝐶,𝜒)𝑃(𝐶′,𝜒′) = 𝛿𝐶,𝐶′𝛿𝜒,𝜒′ . However, when we take ∑(𝐶,𝜒)∈𝐼𝑟𝑟(𝐷𝐺) 𝑃(𝐶,𝜒),
every irreducible representation is hit and every group element is hit, so it doesn’t
matter which conjugacy class or representation we have. For 𝑣 = ∑𝑔∈𝐺 𝑣𝑔 |𝑔⟩ ∈
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ℂ[𝐺] ⊗ ∑𝜒∈𝐷𝐺 ∑𝑥∈|𝜒| 𝑣𝑥 |𝑥⟩ ∈ 𝐷𝐺, we have

∑
(𝐶,𝜒)∈𝐼𝑟𝑟(𝐷𝐺)

𝑃(𝐶,𝜒)𝑣 = ∑
𝐶

∑𝜒 ∑
𝑐∈𝐶

𝛿𝑐,𝑔𝛿𝜒,𝜒′(∑𝑔
𝑣𝑔 |𝑔⟩ ⊗ ∑

𝜒∈𝐷𝐺
∑

𝑥∈|𝜒′|
𝑣𝑥 |𝑥⟩)

(94)
= ∑𝑔

𝑣𝑔 |𝑔⟩ ⊗ ∑
𝜒∈𝐷𝐺

∑
𝑥∈|𝜒′|

𝑣𝑥 |𝑥⟩ (95)

so ∑(𝐶,𝜒)∈𝐼𝑟𝑟(𝐷𝐺) 𝑃(𝐶,𝜒) = 1. Lastly, for any element 𝑣 = ∑𝑐′∈𝐶′ 𝑣𝑐′ |𝑐′⟩ ⊗
∑𝑖∈|𝜒′| 𝑣𝑖 |𝑖⟩ ∈ 𝑉(𝐶,𝜒), we have

𝑃(𝐶,𝜒)𝑣 = ∑
𝑐∈𝐶

𝐵𝑐𝛿𝜒,𝜒′ ∑
𝑐′∈𝐶′

𝑣𝑐′ |𝑐′⟩ ⊗ ∑
𝑖∈|𝜒′|

𝑣𝑖 |𝑖⟩ (96)

= ∑
𝑐∈𝐶

𝛿𝑐,𝑐′𝛿𝜒,𝜒′ ∑
𝑐′∈𝐶′

𝑣𝑐′ |𝑐′⟩ ⊗ ∑
𝑖∈|𝜒′|

𝑣𝑖 |𝑖⟩ (97)

If 𝐶 ≠ 𝐶′, 𝑐 is never 𝑐′, and this is zero. If 𝐶 = 𝐶′, then this is equal to
𝛿𝜒,𝜒′ ∑𝑐′∈𝐶′ 𝑣𝑐′ |𝑐′⟩ ⊗ ∑𝑖∈|𝜒′| 𝑣𝑖 |𝑖⟩, the identity. Thus 𝑃(𝐶,𝜒) acts on 𝑉(𝐶′,𝜒′)
by 𝛿𝐶,𝐶′𝛿𝜒,𝜒′ .

7 Non-abelian Aharonov-Bohm effect
Question. (Irrep = irreducible representation) We consider two special types of
excitations. An anyon of type (𝐶, 1) is called a magnetic charge and an anyon
of type ({𝑒}, 𝜒) is called an electric charge, where 1 means the trivial irrep of
the corresponding centralizer and {𝑒} is the conjugacy class containing only the
identity element. In the latter case, 𝜒 is an irrep of 𝐺. For a magnetic charge
(𝐶, 1), a basis for the irrep is given by

{|𝑐⟩ ∶ 𝑐 ∈ 𝐶}, (98)

and the action of the double 𝐷𝐺 is

𝐴𝑔 |𝑐⟩ = |𝑔𝑐𝑔⟩ (99)
𝐵ℎ |𝑐⟩ = 𝛿ℎ,𝑐 |𝑐⟩ . (100)

For an electric charge ({𝑒}, 𝜒), a basis for the irrep is given by

{|𝑗⟩ ∶ 𝑗 = 1, ..., |𝜒|}, (101)

17



Figure 6: (Left) Swap of 𝛼 and 𝛽 in counterclockwise direction. (Right) Drag 𝛼
around 𝛽 in counterclockwise direction. This is equivalent to two counterclockwise
swaps.

and the action is

𝐴𝑔 |𝑗⟩ = 𝜒(𝑔) |𝑗⟩ (102)
𝐵ℎ |𝑗⟩ = 𝛿ℎ,𝑒 |𝑗⟩ . (103)

Note that the actions above can all be derived from the general formula on
irreps of 𝐷𝐺. If we swap an anyon of type 𝛼 with an anyon of type 𝛽 in the coun-
terclockwise direction (see Figure 6 (Left)), then this induces the transformation
𝑐𝛼,𝛽 given by:

𝛼 ⊗ 𝛽 𝑅−→ 𝛼 ⊗ 𝛽
Flip
−−−→ 𝛽 ⊗ 𝛼, (104)

where 𝑅 = ∑𝑔 𝐴𝑔 ⊗ 𝐵𝑔, and the first factor of 𝑅 acts on 𝛼 and the second factor
acts on 𝛽.

• If 𝛼 = ({𝑒}, 𝜒), 𝛽 = (𝐶, 1), a basis for 𝛼⊗𝛽 and 𝛽⊗𝛼 are given, respectively,
by

{|𝑗, 𝑐⟩ ∶ 𝑗 = 1, ..., |𝜒|, 𝑐 ∈ 𝐶} and {|𝑐, 𝑗⟩ ∶ 𝑗 = 1, ..., |𝜒|, 𝑐 ∈ 𝐶} (105)
Write out the transformation 𝑐𝛼,𝛽 under the bases above. Do the same for
𝑐𝛽,𝛼. Swapping 𝛼 and 𝛽 followed by another swap of 𝛽 and 𝛼 is the same as
dragging 𝛼 along some closed path around 𝛽 (see Figure 6 (Right)). The net
result is a unitary transformation on 𝛼 ⊗ 𝛽 given by

𝛼 ⊗ 𝛽
𝑐𝛼,𝛽−−−→ 𝛽 ⊗ 𝛼

𝑐𝛽,𝛼−−−→ 𝛼 ⊗ 𝛽. (106)
If you have worked out 𝑐𝛼,𝛽 and 𝑐𝛽,𝛼, then you will see that

𝑐𝛽,𝛼 ∘ 𝑐𝛼𝛽 |𝑗, 𝑐⟩ = 𝜒(𝑐) |𝑗⟩ ⊗ |𝑐⟩ . (107)
This is the non-Abelian Aharonov-Bohm effect for anyons.
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• Work out the formula for 𝑐𝛽,𝛼 ∘ 𝑐𝛼,𝛽 in Case I where 𝛼, 𝛽 are two magnetic
charges and n Case II where 𝛼, 𝛽 are two electric charges.

Proof. • First we act by 𝑅.

𝑅 |𝑗, 𝑐⟩ = ∑𝑔
𝐴𝑔 |𝑗⟩ ⊗ 𝐵𝑔 |𝑐⟩ (108)

= ∑𝑔
𝜒(𝑔) |𝑗⟩ ⊗ 𝛿𝑔,𝑐 |𝑐⟩ (109)

= 𝜒(𝑐) |𝑗⟩ ⊗ |𝑐⟩ (110)
Flip
−−−→ |𝑐⟩ ⊗ 𝜒(𝑐) |𝑗⟩ (111)

Thus 𝑐𝛼,𝛽 |𝑗, 𝑐⟩ = |𝑐⟩ ⊗ 𝜒(𝑐) |𝑗⟩. For 𝑐𝛽,𝛼, we have

𝑅 |𝑐, 𝑗⟩ = ∑𝑔
𝐴𝑔 |𝑐⟩ ⊗ 𝐵𝑔 |𝑗⟩ (112)

= ∑𝑔
|𝑔𝑐𝑔⟩ ⊗ 𝛿𝑔,𝑒 |𝑗⟩ (113)

= |𝑐⟩ ⊗ |𝑗⟩ (114)
Flip
−−−→ |𝑗⟩ ⊗ |𝑐⟩ (115)

Thus 𝑐𝛽,𝛼 ∘ 𝑐𝛼𝛽 |𝑗, 𝑐⟩ = 𝜒(𝑐) |𝑗⟩ ⊗ |𝑐⟩.

• Case I: 𝛼, 𝛽 = (𝐶, 1). In this case, a basis for 𝛼 ⊗ 𝛽 is

{|𝑐⟩ ⊗ |𝑐′⟩ ∶ 𝑐, 𝑐′ ∈ 𝐶} (116)
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We then have

𝑅 |𝑐⟩ ⊗ |𝑐′⟩ = ∑𝑔
𝐴𝑔 |𝑐⟩ ⊗ 𝐵𝑔 |𝑐′⟩ (117)

= ∑𝑔
|𝑔𝑐𝑔⟩ ⊗ 𝛿𝑔,𝑒 |𝑐′⟩ (118)

= |𝑐⟩ ⊗ |𝑐′⟩ (119)
Flip
−−−→ |𝑐′⟩ ⊗ |𝑐⟩ (120)
𝑅−→ ∑𝑔

𝐴𝑔 |𝑐′⟩ ⊗ 𝐵𝑔 |𝑐⟩ (121)

= |𝑔𝑐′𝑔⟩ ⊗ 𝛿𝑔,𝑒 |𝑐⟩ (122)
= |𝑐′⟩ ⊗ |𝑐⟩ (123)
Flip
−−−→ |𝑐⟩ ⊗ |𝑐′⟩ (124)

Thus when magnetic charges are bosons.
Case II: 𝛼, 𝛽 = ({𝑒}, 𝜒). In the case, a basis for 𝛼 ⊗ 𝛽 is

{|𝑖⟩ ⊗ |𝑗⟩ ∶ 𝑖, 𝑗 = 1, ..., |𝜒|} (125)

We then have

𝑅 |𝑖⟩ ⊗ |𝑗⟩ = ∑𝑔
𝐴𝑔 |𝑖⟩ ⊗ 𝐵𝑔 |𝑗⟩ (126)

= ∑𝑔
𝜒(𝑔) |𝑖⟩ ⊗ 𝛿𝑔,𝑒 |𝑗⟩ (127)

= 𝜒(𝑒) |𝑖⟩ ⊗ |𝑗⟩ (128)
= |𝑖⟩ ⊗ |𝑗⟩ (129)
Flip
−−−→ |𝑗⟩ ⊗ |𝑖⟩ (130)
𝑅−→ ∑𝑔

𝐴𝑔 |𝑗⟩ ⊗ 𝐵𝑔 |𝑖⟩ (131)

= ∑𝑔
𝜒(𝑔) |𝑗⟩ ⊗ 𝛿𝑔,𝑒 |𝑖⟩ (132)

= |𝑗⟩ ⊗ |𝑖⟩
Flip
−−−→ |𝑖⟩ ⊗ |𝑗⟩ (133)
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Figure 7: The action of 𝐹 (𝑖,𝑗)(𝜏) for two types of triangles.

Thus electric charges are bosons as well. These results match what we find
in toric code.

8 Quantum double model for ℤ2

Question. The quantum double based on 𝐺 = ℤ2 = {0, 1} recovers the toric
code. In this case, at each edge in the lattice lives a qubit with the standard basis
{|0⟩ , |1⟩}. There is no need to orient the edges since all group elements are their
own inverse and the group is Abelian. Let 𝑋 and 𝑍 be the Pauli matrices.

• Work out the formula for the vertex operator 𝐴(𝑣) and plaquette operator
𝐵(𝑝). These will not be exactly the same as the ones defined originally in
toric code, but only differ in a simple way. The two Hamiltonians are equiv-
alent, up to an energy shift.

• Let’s look at ribbon operators.
Let (𝑖, 𝑗) ∈ ℤ2×ℤ2 be a pair of group elements. If 𝑡 is a type-I triangle (resp.
type-II triangle) (see Figure 7), then 𝐹 (𝑖,𝑗)(𝑡) acts as 𝛿𝑗,0𝑋𝑖 (resp. |𝑗⟩ ⟨𝑗|) on
the corresponding edge. The inductive formula for splitting ribbons is given
by

𝐹 (𝑖,𝑗)(𝑡1𝑡2) ∶= ∑
𝑘∈ℤ2

𝐹 (𝑖,𝑘)(𝑡1)𝐹 (𝑖,𝑗+𝑘)(𝑡2) (134)

Note that arithmetic is performed modulo 2.
Work out an explicit expression for the ribbon operator 𝐹 (𝑖,𝑗)(𝑡) where 𝑡 is
shown in Figure 8.
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Figure 8: A general ribbon 𝑡.

• To continue, we need to study irreps of 𝐷ℤ2. Each element of ℤ2 represents
a conjugacy class, and the centralizer is always ℤ2 itself since the group is
abelian. An irrep of ℤ2 is 1-dimensional and is given by a group element, 0
or 1, corresponding to the trivial and non-trivial irrep. To avoid confusion,
let’s denote them by [0] and [1]. The [0] irrep maps everything to 1 and
the [1] irrep maps a group element i to (−1)𝑖. Therefore, irreps of 𝐷ℤ2
correspond to

{(𝑖, [𝑗]) ∶ 𝑖, 𝑗 ∈ ℤ2} (135)

All of them are 1-dimensional. Show that the matrix element of 𝐷(𝑘,𝑙) =
𝐵𝑘𝐴𝑙 in the irrep (𝑖, [𝑗]) is given by

Γ(𝑖,[𝑗])
11 (𝐷(𝑘,𝑙)) = 𝛿𝑘,𝑖(−1)𝑗𝑙. (136)

• In the general case, the ribbon operator in the representation basis is given
by

𝐹 (𝐶,𝜒;𝑢,𝑢′)(𝑡) = |(𝐶, 𝜒)|
|𝐺| ∑

ℎ,𝑔
Γ(𝐶,𝜒)

𝑢,𝑢′ (𝐷(ℎ,𝑔))𝐹 (ℎ,𝑔)(𝑡). (137)

In our case, this formula can be simplified as

𝐹 (𝑖,[𝑗])(𝑡) = 1
2

1

∑
𝑙=0

(−1)𝑗𝑙𝐹 (𝑖,𝑙)(𝑡). (138)

What is the explicit formula of 𝐹 (𝑖,[𝑗])(𝑡) for the ribbon 𝑡 in Figure 8?
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Proof. • For a general 𝐺, with a lattice ℒ with set of edges 𝐸, we have

𝐴(𝑣) ∶= 1
|𝐺| ∑

𝑔∈𝐺
𝐴𝑔(𝑣), 𝐵(𝑝) = 𝐵𝑒(𝑣, 𝑝) (139)

For 𝐺 = ℤ2, this becomes

𝐴(𝑣) = 1
2(𝐼𝑑 + (⊗𝑒∈𝑠𝑡𝑎𝑟(𝑣)𝑋𝑒) ⊗ (⊗𝑒∈𝐸−𝑠𝑡𝑎𝑟(𝑣)𝐼𝑑𝑒)), (140)

𝐵(𝑝) = 1
2(𝐼𝑑 + (⊗𝑒∈𝜕𝑝𝑍𝑒) ⊗ (⊗𝑒∈𝐸−𝜕𝑝𝐼𝑑𝑒)), (141)

for if 𝑝 is a plaquette with edges 𝑝𝑖 ∈ ℤ2, 𝑖 = 1, ..., 4, if 𝑝1𝑝2𝑝3𝑝4 = 1, 𝐵(𝑝)
sends the state to zero, otherwise acts by the identity.

• There are 7 triangles in this ribbon operator, and we label them 𝑡𝑖 in the order
they appear from the left, crossing edges 𝑒𝑖 labelled in the same way. Let 𝑘𝑖
be the summed index in the inductive split of the ribbon operator when we
separate out the 𝑖𝑡ℎ triangle from the ribbon. For example, we use 𝑘7 and 𝑘6
in

𝐹 (𝑖,𝑗)(𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7) = ∑
𝑘7∈ℤ2

𝐹 (𝑖,𝑘7)(𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6)𝐹 (𝑖,𝑗+𝑘7)(𝑡7) (142)

= ∑
𝑘7∈ℤ2

𝐹 (𝑖,𝑘7)(𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6)[𝛿𝑗+𝑘7,0𝑋𝑖]𝑒7 (143)

= ∑
𝑘7∈ℤ2

∑
𝑘6∈ℤ2

𝐹 (𝑖,𝑘6)(𝑡1𝑡2𝑡3𝑡4𝑡5)𝐹 (𝑖,𝑘7+𝑘6(𝑡6)[𝛿𝑗+𝑘7,0𝑋𝑖]𝑒7

(144)
= ∑

𝑘7∈ℤ2
∑

𝑘6∈ℤ2

𝐹 (𝑖,𝑘6)(𝑡1𝑡2𝑡3𝑡4𝑡5)[|𝑘7 + 𝑘6⟩ ⟨𝑘7 + 𝑘6|]𝑒6[𝛿𝑗+𝑘7,0𝑋𝑖]𝑒7

(145)
⋮ (146)

Following this through, we eventually get

∑
𝑘2,𝑘3,𝑘4,𝑘5,𝑘6,𝑘7∈ℤ2

[𝛿𝑘2,0𝑋𝑖]𝑒1[|𝑘3 + 𝑘2⟩ ⟨𝑘3 + 𝑘2|]𝑒2[𝛿𝑘4+𝑘3,0𝑋𝑖]𝑒3[|𝑘5 + 𝑘4⟩

(147)
× ⟨𝑘5 + 𝑘4|]𝑒4[𝛿𝑘6+𝑘5,0𝑋𝑖]𝑒5[|𝑘7 + 𝑘6⟩ ⟨𝑘7 + 𝑘6|]𝑒6[𝛿𝑗+𝑘7,0𝑋𝑖]𝑒7

(148)
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which, after summing, we have

[𝑋𝑖] ⊗ [2 |0⟩ ⟨0| + 2 |1⟩ ⟨1|] ⊗ [2𝑋𝑖] ⊗ [2 |0⟩ ⟨0| + 2 |1⟩ ⟨1|] (149)
⊗[2𝑋𝑖] ⊗ [2 |0⟩ ⟨0| + 2 |1⟩ ⟨1|] ⊗ [𝛿𝑗,0𝑋𝑖 + 𝛿𝑗+1,0𝑋𝑖] (150)

= [𝑋𝑖] ⊗ [2𝐼𝑑] ⊗ [2𝑋𝑖] ⊗ [2𝐼𝑑] (151)
⊗[2𝑋𝑖] ⊗ [2𝐼𝑑] ⊗ [𝑋𝑖] (152)

• With this usual quantum double operators

𝐵𝑘 |𝑛, [𝑛′]⟩ = 𝛿𝑘,𝑛 |𝑛, [𝑛′]⟩ , 𝐴𝑙 |𝑛, [𝑛′]⟩ = ∑𝑚
Γ𝜒

𝑚𝑛′(𝑞𝑙𝑛𝑙𝑙𝑞𝑛) |𝑙𝑛𝑙, [𝑚]⟩

(153)

In abelian ℤ2 with 𝜒 = (𝑖, [𝑗]), we get

𝐷(𝑘,𝑙) |𝑛, [𝑛′]⟩ = 𝐵𝑘𝐴𝑙 |𝑛, [𝑛′]⟩ (154)
= 𝐵𝑘 ∑𝑚

Γ(𝑖,[𝑗])
𝑚𝑛′ (𝑙) |𝑛, [𝑚]⟩ (155)

= 𝛿𝑘,𝑖 ∑𝑚
Γ(𝑖,[𝑗])

𝑚𝑛′ (𝑙) |𝑛, [𝑚]⟩ (156)

so [𝐷(𝑘,𝑙)]11 = 𝛿𝑘,𝑖Γ
(𝑖,[𝑗])

11 (𝑙). If 𝑗 = 0 everything is mapped to 1. If 𝑗 = 1,
we map to (−1)𝑙. Thus the matrix element corresponds to 𝛿𝑘,𝑖(−1)𝑗𝑙.

• We showed above that 𝐹 (𝑖,𝑙)(𝑡) = 2 |0⟩ ⟨0| + 2 |1⟩ ⟨1| = 2𝐼𝑑 on edges, 2𝑋𝑖

on edges crossed by the 𝜏 triangles, and 𝑋𝑖 on the ends. Thus we have

[1
2𝑋𝑖] ⊗ [𝐼𝑑] ⊗ [𝑋𝑖] ⊗ [𝐼𝑑] (157)

⊗[𝑋𝑖] ⊗ [𝐼𝑑] ⊗ [1
2𝑋𝑖] (158)

+(−1)𝑗[1
2𝑋𝑖] ⊗ [𝐼𝑑] ⊗ [𝑋𝑖] ⊗ [𝐼𝑑] (159)

⊗[𝑋𝑖] ⊗ [𝐼𝑑] ⊗ [1
2𝑋𝑖] (160)

On edges crossed by 𝜏, this is the operation by𝑍, and on edges on the ribbon
itself, this is the operation by 𝑋 if 𝑖 = 1.These are the string operators from
toric code.
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