Topological Quantum Computation Problems

Alec Lau

In spring 2018, Shawn X. Cui taught an excellent seminar on topological quan-
tum computation, and these were the homework problems.
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1 Logical operators in toric code

Question. In class, we studied string operators SZ(t) and S%(t') where t and t'
are string operators on the lattice and dual lattice, respectively. By definition,
SZ(t) acts by Pauli Z on each edge of t and by identity otherwise. Similarly,
SX(t") acts by Pauli X on each edge crossed by t' and by identity otherwise. Con-
sider the case where both t,t" are closed strings. Let Vs be the ground state space.



o Show that S%(t) and S*(t') preserve Vs for arbitrary closed strings t, t.
Moreover, show that the action of these operators on Vs only depends on
the isotopy class of the strings. In particular, this means if a closed string is
contractible, the corresponding string operator acts by identity on ground
states.

e By the previous result, there are four string operators of Z—type which are
(SZ(@), S (m), SZ(1), S%(mUl)}, where @ is the empty string or any con-
tractible string, m is a loop along the horizontal direction, and | is a loop
along the vertical direction. See Figure 4. Similarly, there are four strings
of X—type, {S* (@), SX(m), SX (1), SX(m U 1)}. Let

Z,=8%m), Z, = S%(), (1)
X, =8%1"), X, = S¥(@m") ()

Show that on the ground states the commutation relations between the opera-
tors { Z,, Z,, X, X, } behave like the usual Pauli operators { Z, Z,, X{, X, }.
These operators are the logical operators.
e Show that the space of logical operators, i.e. those preserving V.,
erated as an algebra by {21, 22, Xl, Xz }. (Hint: the space of all operators
on a physical qubit has a basis given by {1d, X, Z,XZ}.)

is gen-

Proof. e The Hamiltonian on toric code is given by
H:=Y(1-A)+ ) (1-B) (3)
veV peF
for
AU c= (®eestar(v)X) ® (®eeE—star(U)Id)’ (4)

and F the set of plaquettes, E is the set of edges, and V' the set of vertices.
Thus the ground state V, is given by

Ves = {lw) € #2 = ®,cxC” : A, lw) = |y).B,ly)=w).YveV,p€EF)}
6)
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Figure 1: Closed strings in the lattice and dual lattice on the torus.

First off, we examine the commutators [A4,, S 4 01, [Bp, Sz o1, [A,, sX 1,

and [B), SX(¢")] for t,¢' closed loops. If ¢ is a closed loop, every vertex in ¢
must be connected to an even number of edges in ¢; a vertex in ¢ connected to
an odd number of edges in t would be a boundary of ¢, which is supposed to
be closed. If v is a vertex that isn’t in 7, then A, must commute with S z ),
as they are acting on different tensor factors. If v is a vertex in ¢, it is adja-
cent to either 2 or 4 edges in #. Thus every vertex in ¢ has an even number
of Z operators in the tensor product. By inspection, XZ = —Z X, so we
have A,S%(1) = (-1)**SZ(HA, = SZ(HA,, ie. [A,,S?(1)] =0,Vv € 1
as well. Furthermore, since B, only consists of Z operators and identity
operators, and so does SZ(®), [B,, SZ(#)] mustbe O forall p € F.

Similarly, for a plaquette p € F in ¢’, there can either be 2 or 4 dual edges
in p, and thus either 2 or 4 edges in dp. By the same reasoning as above,
S*X@")B, = (-1)**B,S*(t') = B,S*(¢'), s0 [B,.S¥*(")] = 0,Vp € 1'.
Similarly, A, is comprised only of X operators and identity operators, and
so is SX('), so [A4,, SX(t')] must be O for all p € F. Note that this is true
independently of the closed strings t,7’.

Let |y) be a ground state, and define @) 1= SZ (@) |w), |¢') := SX@') |w).



From before, we have

Ay lp) = A 82 ly) = SEMA lw) = SZO lw) =19y (D)
B,|p) = B,S“(t) lw) = S“(1)B, ly) = S“M) lw)=1¢)  (8)

and

Apl¢") = ASXW) lw) = STAA lw') =S¥ lw) =19") )
B,|¢') = B,S*(t") ly) = S*X()B, ly) = S*() ly) =1¢')  (10)
Thus S% (1), SX(t') preserve V,s» if t,1" are closed strings.
Consider SZ(t) |y). We can deform the action of SZ(¢) by acting by B,
on S% () where at least one edge in dp is in ¢. This deforms ¢ around the
plaquette p, because it acts by Z on the edges around p where ¢ wasn’t, and
cancels out the edges around p where ¢ already was, because Z> = Id.
Similarly, we can deform the path of ¢’ by acting by A, on S¥(¢') where
at least one edge adjacent to v is crossed by an edge in #’. This deforms ¢’
around the vertex v, because it acts by X on the dual edges around v where
t" wasn’t, and cancels out the dual edges around v where ¢’ already was, by
acting on such edges twice with X, and thus acting on such edges by the
identity. See the Figure 2 for an example.

Thus if we get ¢, by a deformation on ¢;, we have S%(t,) = B, ...BanZ(tz)
for some plaquettes p;,i € {1,...,n}. Thus, for |y) a ground state, we have

S%(ty) ly) = B, ...B, S“(t)) lw) = S“(t)) lw) (11)
SEO) lw) = Ay Ay STAD lw) = ST@) lw) (12)

so although the operators SX,.SZ change with isotopy, their action on Vs 18
preserved.

Up to isotopy, m intersects I’ on only one edge of the lattice, as well as [ and m’.
Thus the commutation relations between Z;, X, and Z,, X, come down to their
action on that one edge (Z; and X, need not intersect, and the same goes for Z,
and X). Since their actions are Z and X, they must obey the same commutation
relations as { Z, Z,, X1, X5 }.

Since the space of all operators on a qubitis generated by { Z, X'}, and { Z 15 22, X 1> X 2}
is isomorphic as an algebra to { Z;, Z,, X, X, }, the space of logical operators is
generated by {Z,, Z,, X;, X, }. ]
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Figure 2: Deformation of loops.

2V, is an error-correcting code

Question. Let the square lattice £ in the definition of toric code have size L X L,
namely, there are L edges in the shortest non-contractible loop both along the
horizontal direction and along the vertical direction. Let

Id + B,

N | il | (13)

veV peF

Namely, P is the projector onto the ground space V. Let O be any operator acting
on less than L qubits, namely, O acts nontrivially on at most L — 1 qubits. Show



that
POP = a,P, (14)

for some scalar ag. (V, is an error-correcting code which corrects errors on

arbitrary [LT_IJ qubits. (Hint: it suffices to show this equation for a basis of the
space of operators acting on at most L — 1 qubits. A basis for this space is given
by

{H% P el{ld, X, Z,XZ}, and at most L — 1 P/s are not trivial} (15)

eeE

Proof. Each edge in £ is the side of two plaquettes and belongs to the star of two
vertices. Thus, for each edge qubit e in some state [... ® e ® ...], we have

2 )nﬁ(Id+X)(21d)n5(ld+X)(2£d) 16)
(ZId)n3(Id+Z)(2Id)n2(1d+Z)(2£d)nl an

acting on e, with n; € {0, ..., L? — 2} depending on the order of ennumerating the
vertices and plaquettes. This action on each e becomes

Id+X Id+X Id+Z /Id+Z Id+X Id+Z

(GGG ) =) (18)
(Id+X-zZ+XZ)_P (19)

For each edge, we have

ld+X+Z+XZ 1

PIdP, = A = EPe (20)
PeXPezPePe=Id+X-;Z+XZ=%Pe @1
PeZPe=Id+X-:gZ+XZ=%Pe 22)
PeXZPe:_Id+X+Z+XZ:_1Pe (23)
8 2

Thus, tensoring all the P,s together to form P, we get
POP =agyP (24)
where a4 is a product of scalar multiples of % [

6



3 Braiding statistics of quasi-particles in toric code

Question. In class, we have shown that there are four types of quasi-particles, the
vacuum 1, the electric charge e, the magnetic charge m, and the composite em of
an electric charge with a magnetic charge. Consider a pair of electric charges e,
and denote the state of such configuration by

lwin) = SZ(@) |e) (25)

where |€) is some ground state. If we swap the two particles in counterclockwise
direction, then the state becomes

lwyiy = SZ@) |e) (26)

But since t and t' can be deformed to each other, we have |y;,) = |y ;). Hence
the electric charge e is a boson. Similarly, the magnetic charge m is also a boson.
However, show that the composite em is a fermion.

Proof. 1 assume that an em charge on the lattice is a site (adjacent vertex and dual
vertex) on the lattice. Exchanging the em sites involves composing the paths creat-
ing the quasiparticles with a loop where the vertices of said loop are the locations
of the particles:

exchange

Wen) 1= S¥WN)SZ (1) le) ———S¥ (1" U1}, )SZ (1 U11,,) |€) 27)
=SX W)X (1], )SZ DS (t150p) |€)  (28)

=S¥ ()X (1),,,)S7 () |€) (29)

= - S*"S? S (1],,,) le) (30)

= - S¥()S?() le) (31)

== [Wem) (32)

since trivial (dual) loops act by identity on |e¢) € Vs and SZ(¢) intersects SX (1 l/oop)
once, since the vertices are adjacent, and thus they anticommute. Since the ex-
change operator gives a phase factor of -1, em charges are fermions. [

4 Single-particle excitation on a torus

Recall Kitaev’s quantum double model based on a finite group G on a torus. For &
an arbitrary lattice on the torus, we fix an orientation and associated to each edge

7
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Figure 3: Operators used to construct the Hamiltonian, for g, h € G

the Hilbert space C[G] for a total Hilbert space on & denoted by #,,,. We denote
the set of all vertices V' and the set of all plaquettes F'. For each site s = (v, p) (for

each vertex we associate the plaquette to its upper right) we have the operators:
We further define

1

Av) 1= —
(v) Gl

D Ay ), B(p) = B,(v, p) (33)

geq

and then define the Hamiltonian by

H= ) (1-Aw)+ ), (- B(p) (34)

veV peF

where the ground state is

Ves = {lw) € Zio - AW) lw) = lw), B(p) ly) = y)} (35)

Question. Single-particle excitations cannot occur on the sphere, but they can
occur on the torus. Consider a square lattice on the torus. All horizontal edges
are oriented to the right and all vertical edges are oriented upward. Let G be



a finite group and let a,b € G be two group elements which do not commute.
Let r = aba'b~'. Recall that on each edge lives a Hilbert space with the basis
{|g) : g € G} and the total Hilbert space is the tensor product of the Hilbert space
on all edges. Let |y) be the basis state in the total Hilbert space whose value at
each edge is shown in Figure 7, and all other edges are labeled by e. Define

was) i= ] A@) lv) (36)

veV

1. By definition, |y, ,) is stabilized by all A(v)s. Let p be the plaquette on the
top right of the lattice. Show that

B(P) |l//a,b> = |l//a,b> ’Vp # Do (37)
B(po) lwap) =0 (38)

Thus |y, ) is a state which violates only one constraint. Note that |y, ;) is
not the zero vector.

2. Let C be the conjugacy class containing r. Let vy be a vertex on the boundary
of py and sy = (v, py) be a site. For each ¢ € C, define

le) 1= B.(s0) lwy) (39)

and let V' = span{|c) : ¢ € C}. Show that the states {|c) : ¢ € C} form a
basis of V.

3. It is not hard to see that any state in V' is stabilized by all A(v) and B(p) for
which v # vy, p # py. What is the action of the operators A,(sy) and Bj,(s)
on V' ? Write it out under the basis {|c) : ¢ € C}. Conclude which irrep V'
corresponds to. A state in V' represents an excitation on the single site s.

Proof. 1. Every edge in & is hit twice by [ [, . Due to the orientation of each
edge around every plaquette, when we order the edges clockwise around the
plaquette we get right multiplication by g on one edge, and left multiplica-
tion by g on the right edge, for every g in the sum in A(v), once all vs are
taken into account. Suppose a plaquette p’s state |p) has edges hy, hy, hs,
and h, going clockwise around the plaquette, starting from the bottom edge.
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Figure 4: Lattice on a torus

Acting on & by ], A(v), the Hilbert subspace around the plaquette be-

vevV
comes
1 — — — —
[T4wIw) = e D (@%@ ghE: ® &y ® g1hug)
vey Gl 81:82:83:84

(40)

This gives us

. 1
B lyas) 1= Bep) lyay) = ﬁ Z 5e,g1h1582h2§g3h_3§g4h_45 Wap)

|G £1-82:83:84
(41)
1 3
= |G|4|G| Z 6e,g1h1h2h_3h_45|v/"’b> (42)
g1€G

In our particular labelling, all plaquettes except for p, are of configuration
either eeee, aeae, or ebeb, so the action of B(p) for all p € F except for p,
is the identity.

10



The configuration on p, is abab, giving us

1
B(o) Wap) = 15 D e gatasz Was) (43)

geiG

Since a, b do not commute, ¢ # gaba b g for any g € G, and the state
becomes O.

2. From the above calculation, we have

1
€} 1= Belso) Wap) = 157 2, Sears V) (44)
geG

There is a unique set of g € G such that, for a fixed ¢ € C, grg = ¢. Call
this set G,. Thus completely disjoint subsets of G are kept in the sum for
each c € C.

Let {a, € C|c € C} be such that

D aley=0= ) a H 2A<v>|w> (45)

ceC ceC UeV gGG

But since these are all different gs, the only {a,} set in which this is true is
a,=0forallc € C.

3. Fix ac € C for now. We have

Ag(sg) le) = Ag(s0)B.(50) Wy p) (46)
5gcg gaba bg g g(SO) |l//a b) (47)
gcg g(SO) |Wa b> (48)

Byg g(so>1'[ Z o v) (49)

veV g 'eG
Bgcg |llja,b> (50)

since the action of A (SO)JUSt rearranges the sumon v, € s, for — |G| Zg/eG Agr |y ).
Thus

Ag(sp)le) = |gcg) (5D

11



forallc € C.
Next we look at By (sq) |c). We have

By, (s0) [¢) = By(s0)B.(50) [Wy,p) (52)

For a plaquette p with clockwise labels g, g,, g3, and g4, starting from the
bottom label, we have

By(0)B(p) = By(D)be g 55 (53)
= Ohg 005 T10c.015 8 54
= 0pcOcg 055 (55)
= 6p,cB.(p) (56)
Thus we have
By, (so) [e) = 6p |€) (57)

forallc € C.

We now check what irreducible representation of the quantum double V'
corresponds to. An irreducible representation of the quantum double corre-
sponds to (C, y), where y is an irreducible representation of the centralizer
of r. The Hilbert space corresponding to (C, y) is given by

CICI®V, (58)

Since V' = C[C], the irreducible representation corresponding to V' is (C, 1).
O]

5 Local operators interpreted as ribbon operators

Question. Let s = (v, p) be any site on a lattice. We show the local operators Ag(s)
and By (s), h,g € G can be interpreted as ribbon operators for certain ribbons.
We start with By(s). Let t; be a ribbon contained in the plaquette p, starting and
ending both at s. See Figure 5 (Left). It consists of four triangles of type-1I (direct
triangles) t|,t,,13, 14, and is directed in the order the triangles are listed. Assume
the edges on the boundary of p are directed as shown in Figure 5 (Left) and a basis
state |xy, X, x3,X4) is given. Then

F®8(t) |x,) = 6, 1x;) (59)

12
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By the inductive formula for ribbon operators

FRO(1y1)) 1= Y FOR @) FRRKD (1),
keG

we have

FOO@ ) 1x).x0,) = Y FOO) [x) @ FE9,) |x;)
keG

= Z 5k,x15Eg,x2 |X1,X2>
keG

= 5g,xlx2 |X1, X2>
Inductively, it is not hard to see that

h, — —
F( g)(ts) |X1, X2, X3,X4> - 5g,x]x2x3x4 |x1’ Xz, X3,X4> - Bg(S)

(60)

(61)

(62)

(63)

(64)

Similarly, let T, be a ribbon around the vertex v, starting and ending at s. It has
four triangles of type-1 (dual triangles) t,,1,, 13,74, and is also directed in the

order the triangles are listed. See Figure 5 (Right). Prove that

FR8 (1) =5, ,Ay(s).

(65)

Note that Ay(s) actually only depends on v, hence the ribbon operator F (h’g)(rs)

does not depend on the choice of the initial site.

13



Proof. By the inductive formula for ribbon operators, we have

F(h,g)(Ts) — Z F(h,k)(Tl T,73) Flkhk.kg) (7) (66)
keG
— Z Z F(h,l)(Tl z,) F(lhl,lk)(Ta) Fkhicke) o) 67)
keG I€G
— Z Z Z F(h”")(rl) F(ﬁhm,ﬁl)(fz) F(lhl,lk)(rs) Fkhkke)( 7)) (68)
keG I1€G meG
Since
F"8(t) |x) =6, , | hx) (69)

This gives us

FRO(z) |x1, x5 X3, %4) = 2 Z Z Sme |NX1) ® 65y, IMAmx,)  (70)

keG leG meG
® 8y |1hIx3) @ b7, , lkhkxy) (71)
= |hx;) @ |hxy) ® |hx3) @ 6, |hxy) (72)
= 8, o Ap(s) |x1, X9, X3, X4) (73)

6 Excitation types can be locally measured

Question. We know that an excitation in general occupies a site s = (v, p) and
the types of excitations are in one-to-one correspondence with irreps of DG, the
quantum double of group G. Recall that the irreps 1rr(DG) are characterized by
the pairs (C, y), where C is a conjugacy class with a pre-selected element r €
C and y is an irrep of Z(r), the centralizer of r. For each ¢ € C, arbitrarily
choose q, € G such that q.rq, = c. Also recall that DG acts on the total Hilbert
space by the local operators D(s) (recall that D(s) is the algebra generated by
Ag(s), By (s), g, h € G). We wish to find a set of elements

{(Pc., € DG : (C, ) € Irr(DG)) (74)

14



which satisfy the following properties.

PepPicryny =6c,crby s (75)
Y Pey=1 (76)

(C,p)elrr(DG)

P(C,}() acts on I/(C,vll) by 5(C’C/)5(Xul’,)' (77)

where we recall V(C, o= CICI ® V)(‘ If we have such a set of elements, then
their corresponding operators { Pc ,\(s)} in D(s) form a complete set of orthogo-
nal projectors and hence can be used to construct a measurement. Moreover, the
projector P ,(s) precisely projects states to the irrep V¢ . Verify that

__lxl —
Py = 1Z0l Z Z Tr(x(2)B.A, (78)

ceC zeZ(r)
gives the desired elements (| | is the dimension of the representation).

Proof. Recall that the Hilbert space of an excitation (C, y) in the quantum double
model is given by

Z={lc)®lj):ceCj=1..lxl} (79)

and D(s) acts on # by

By le)®1j) =6p.lc) ® 1) (80)
Agle) ® 1)) = 1gcg) ® x(qqez84.) 1J) (81)
= Z 1(Ggez84.); 18€8) ® i) (82)

From these it is easy to see that

AgBj = ByjigAy, By, By, = 5h1,h2Bh2’ Agl Agz = Agng (83)
By Schur Orthogonality, we have
— | Z ()
D A Dk @t =8 418316yt (84)

zeZ(r) | |

15



and since Tr(y(z)) = ). x(x);, we can rewrite our expression for Pc, - We
have, for |j) a basis vector in some irreducible representation y’,

. || S
P(C,/y) |n> ® |.]> =T 2 Z Z X(Z)mm c Z /’{/ (qqczqcnqcz chczchc ij |qczqcnqcz qc> ® |l>
12Nl &2 2€Z(r) m

(85)
x| .
> > Zx(z)mmZx(chczchc)u Sequina 2 19:20cn4.Z e) @ i)

B |Z(r)| ceCzeZ(r) m
(86)
_ _lxl IZ(r)I
= 1200 & 2 2P dnidns 1 1 @) &7
_ IZ(r)I
=201 & ey 1) ®9)
=Y B.An)®35, ,j) (89)
ceC
by Schur orthogonality.

Now we check the first property. For some state in X .nccn e, 7| Uer I¢") ®
v; i) € CIC"]1 ® V,,n, we have

P(C,x)P(C/,){/)U = Z Bc5;(,;(” Z BC,5}(,’1,,U (90)
ceC I=Tel
= Z 56’0//5}(7}(// Z 5c’,c”5}(’,}(”U (91)
ceC cleC’!

This is only nonzero if y” = y = y’ and C" = C = C’. If this is the case, we
have

PepPeryn= D80, vele) ®..) (92)
ceC ceC
= Z U.]e) ® ... (93)
ceC

Thus P(C,;()P('C’,;(’) = 6C,C,5],/’. However, when we take E(q,x)glrr(pg) Pc )
every irreducible representation is hit and every group element is hit, so it doesn’t
matter which conjugacy class or representation we have. For v = )] 2eG Ug v, lg) €

16



CIGI® ¥ ,epG Zxely| Vx |1X) € DG, we have

D Pepr=2 D D 80, Qv l)® D D velx))
c g

(C,y)EIrr(DG) x ceC YEDG xe| x|
(%94)

:ZUglg)@ Z Z v, |x) 95)
g

XEDG xe|y’|

0 X c.perrnc) Pc,y = 1. Lastly, for any element v = X ./ccrvp|c’) ®
11V i) € Vic,y)> we have

i€ly
Pepv= D B,y D, v 1Y ® Y vili) (96)
ceC c'eC’ i€y’
=Y by 2, val)® Y vli) ©7)
ceC c'ec’ i€ly'|

If C # C’, c is never ¢’, and this is zero. If C = C’, then this is equal to
6,y Derect Uer l¢') ® Zielx’l v; i), the identity. Thus P ) acts on Vicr 1
by 5C,C/5}(,)(" L]

7 Non-abelian Aharonov-Bohm effect

Question. (Irrep = irreducible representation) We consider two special types of
excitations. An anyon of type (C,1) is called a magnetic charge and an anyon
of type ({e}, y) is called an electric charge, where 1 means the trivial irrep of
the corresponding centralizer and {e} is the conjugacy class containing only the
identity element. In the latter case, y is an irrep of G. For a magnetic charge
(C, 1), a basis for the irrep is given by

{ley :ceC}, (98)
and the action of the double DG is

Aglc) = |gcg) 99
Byley =6, lc). (100)

For an electric charge ({e}, y), a basis for the irrep is given by

{1y 1j="1..1xl} (101

17
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Figure 6: (Left) Swap of @ and f in counterclockwise direction. (Right) Drag a
around S in counterclockwise direction. This is equivalent to two counterclockwise
swaps.

and the action is
A ) = x@ 1)) (102)
B 1j) =06p.1i)- (103)

Note that the actions above can all be derived from the general formula on
irreps of DG. If we swap an anyon of type a with an anyon of type p in the coun-
terclockwise direction (see Figure 6 (Left)), then this induces the transformation
Cq,p 8iven by:

R Flip
a@f—a@pf — fQa, (104)

where R =), g Ag ® B, and the first factor of R acts on a and the second factor
acts on f.

o [fa=({e}, y),p = (C,1), abasis for a@p and fQa are given, respectively,
by

{li,e) rj=1..lxl,ceCland{lc,j):j=1,..lxl.ceC} (105)

Write out the transformation c, 3 under the bases above. Do the same for
Cp.o- Swapping a and f followed by another swap of p and a is the same as
dragging a along some closed path around f (see Figure 6 (Right)). The net
result is a unitary transformation on a @ p given by

d®F L p@a L5 a® b, (106)

If you have worked out ¢, 5 and cp ,, then you will see that

Cpa®Caplisc) = x() ) ®lec). (107)

This is the non-Abelian Aharonov-Bohm effect for anyons.
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o Work out the formula for cg , © ¢, 5 in Case I where a, p are two magnetic
charges and n Case Il where a, f are two electric charges.

Proof. e First we act by R.

Rlj.c)= Y, A 1i) ® By Ic) (108)
g

=) 1@ 1/) ®6,lc) (109)
g

= x()1j) ® lc) (110)
Flip

— |e) ® 2(e) 1)) (111)

Thus ¢, 4 |j,c) = |¢) ® x(c) |j). For cg ., we have

Rle,jy= ), A le) ® B, j) (112)
4

= ) 13¢8) ® 8, 1)) (113)
g

=lc) ® |j) (114)
Flip

— /) ®lc) (115)

Thus Cﬁ,a ° Caﬂ |j,C> = /}/(C) |.]> ® |C>
e Case l: a, f = (C,1). In this case, a basis for a ® f is

{loy®|c'y : ¢,c’ € C} (116)
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We then have

Rl)®[c') =D A,lc)® B, ')
4

= ) 1gc8) ® 6, Ic)
g

=le)®|c")

Flip

— ") ® [c)

R

= 2 Agle') ® By |c)

g

= |gc'g) ® 3, Ic)

=) ®c)

Flip

— le)®c’)

Thus when magnetic charges are bosons.
Case II: a, p = ({e}, y). In the case, a basis for a @ f is

@ 1j) - ij=1...1xl}

We then have
RIY®1j)=) A, li)® B, )

g

=Y 2@ 11) ® 8, 1))
4

= x(e) i) ® j)

= i) ® |j)

Flip

— /) ® i)

R

— ) A lj) ® B li)
g

=Y 2@ 1)) ® 8, Ii)
g

Flip
=1j) ® i) — ) ® 1))
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Figure 7: The action of F/)(r) for two types of triangles.

Thus electric charges are bosons as well. These results match what we find

in toric code.
O

8 Quantum double model for Z,

Question. The quantum double based on G = Z, = {0, 1} recovers the toric
code. In this case, at each edge in the lattice lives a qubit with the standard basis
{10),]1)}. There is no need to orient the edges since all group elements are their
own inverse and the group is Abelian. Let X and Z be the Pauli matrices.

o Work out the formula for the vertex operator A(v) and plaquette operator
B(p). These will not be exactly the same as the ones defined originally in
toric code, but only differ in a simple way. The two Hamiltonians are equiv-
alent, up to an energy shift.

e Let’s look at ribbon operators.

Let (i, j) € ZyXZ, be a pair of group elements. Ift is a type-I triangle (resp.
type-11 triangle) (see Figure 7), then F®)(1) acts as 8;0X" (resp. 1j) (jl) on
the corresponding edge. The inductive formula for splitting ribbons is given
by

FO @) i= 3, FOOa)F ) (134)
kEZz

Note that arithmetic is performed modulo 2.

Work out an explicit expression for the ribbon operator FU)(t) where t is
shown in Figure 8.
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Po

Figure 8: A general ribbon 7.

To continue, we need to study irreps of DZ,. Each element of Z, represents
a conjugacy class, and the centralizer is always Z, itself since the group is
abelian. An irrep of Z, is 1-dimensional and is given by a group element, 0
or 1, corresponding to the trivial and non-trivial irrep. To avoid confusion,
let’s denote them by [0] and [1]. The [0] irrep maps everything to 1 and
the [1] irrep maps a group element i to (—1)'. Therefore, irreps of D7,
correspond to

(@D 2 i) € 2y} (135)

All of them are 1-dimensional. Show that the matrix element of D ;) =
B, A, in the irrep (i, [j]) is given by

0P (D) = 8 (-1 (136)

In the general case, the ribbon operator in the representation basis is given
by

il I(C, )l c,
Fexmip = LY L0 D) FH00. (137
h.g

In our case, this formula can be simplified as
1
1

FOn) = 2 3 (<D FOa). (138)
1=0

What is the explicit formula of F*UV(t) for the ribbon t in Figure 8?
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Proof. e For a general G, with a lattice & with set of edges E, we have

1

A(v) 1= —
(v) Gl

D A,(v), B(p) = B,(v.p) (139)

geq

For G = Z,, this becomes
1
A(U) = E(Id + (®eestar(v)Xe) ® (®eEE—star(v)1de))’ (140)

B(p) = %(Id + (®eeapZe) ® (®eeE—apIde))’ (141)

for if p is a plaquette with edges p; € Z,,i =1, ...,4,1if p;p,p3ps = 1, B(p)
sends the state to zero, otherwise acts by the identity.

e There are 7 triangles in this ribbon operator, and we label them #; in the order
they appear from the left, crossing edges e; labelled in the same way. Let k;
be the summed index in the inductive split of the ribbon operator when we
separate out the i'” triangle from the ribbon. For example, we use k7 and k¢

m

F(i’j)(t1t2t3t4t5t617) — Z F(i’k7)(t112t3t415t6)F(i’j+k7)(l7) (142)
k7€ZZ
k7622

= D D FURt ty151,t5) FORTo(16)[6 4 0 X
k1€Z5 ke€Z,

(144)

= D D, FURO 01,05k + ke) (kg + kgl1,[6,45, 0X 1.,
k7€ZZ kGEZZ
(145)

(146)
Following this through, we eventually get

[, 0X T, Llks + ko) (kg + kol1o)[8k, 11y 0X T, [IKs + ky)
Ky ey kg ks ek €2,
(147)
X (ks + kg1, [0k ks 0X o [1h7 + k) (kg + kgl [8) 140X e,
(148)
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which, after summing, we have
[XTQ®[210) (0] +2|1) (111 ® [2X'1 @ [210) (O] + 2 [1) (1]] ~ (149)
QRXT®[210) (0] + 2|1 (11 ®[6;0X" +6;,10X'T  (150)
= [X'1®2Id]® [2X'] @ [2Id]  (151)
QRRXT®[RIdI®[X'] (152)

e With this usual quantum double operators

By |n.[n']) = 6y, |n.[n'1) . Ay In.[n'1) = D' TX (g 71q,) |Inl, [m])

(153)
In abelian Z, with y = (i, [j]), we get
Dy In,[n']) = B Ay |n, [n']) (154)
= B, Y TV (1) |, [m]) (155)
m
=6 2, TV n, [m1) (156)

m

@
so [Dypliy = 8,1,

we map to (—1)1 . Thus the matrix element corresponds to 6k’,-(—1)j L

(1). If j = 0 everything is mapped to 1. If j = 1,

e We showed above that F'(1) = 2|0) (0] + 2 |1) (1| = 21d on edges, 2X’
on edges crossed by the 7 triangles, and X' on the ends. Thus we have

3X1® 1] ® X' ® [1d] (157)

X' ® [1d1® [3X'] (158)
+H-SX @ (141 ® [X'] @ [1d] (159)
X' ® [1d1® [3X') (160)

On edges crossed by 7, this is the operation by Z, and on edges on the ribbon
itself, this is the operation by X if i = 1.These are the string operators from
toric code.

O
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