
Quantum Groups

In the spring of 2019 Professor Daniel Bump gave a series of lectures on Quantum Groups

(MATH 263C). These notes are ‘live-texed’ by Alec Lau (with a few embellishments here and

there), and thus all typos are to be reported to Alec Lau at aszlau@gmail.com.
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7 The standard module of Uq(sl2) and its R-matrix, the 6- 18

1 Bialgebras and Hopf Algebras

1.1 Braids, Categories, & Braided Categories

The braid group Bn of n braids is generated by braids t1, ..., tn−1; braids are multiplied by

concatenating. The braid relations are

titi+1ti = ti+1titi+1 (1)

titj = tjti if |i− j| ≥ 2 (2)

Strands can only move in one direction, and thus knots like the Trefoil knot cannot be modeled by

the braid group.

Let U, V,W be vector spaces. We need R ∈ End(U ⊗ V ), S ∈ End(U ⊗W ), T ∈ End(V ⊗W ).

This version of the Yang-Baxter equation is the identity (T ⊗IU )(IV ⊗S)(R⊗IW ) = (IW ⊗U)(S⊗

IV )(IU ⊗ T ).

A monoidal category is a category with a bifunctor ⊗ that is associative i.e. natural isomor-

phisms (A⊗B)⊗ C ∼= A⊗ (B ⊗ C) such that all identities satisfy the Pentagon Identity :

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

Example 1. The category of sets with ⊗ = ×, with unit object I = {1} the set with one object.

A braided category, to be defined later, is a monoidal category with a braiding cV,W : V ⊗W →

W ⊗ V .

The category of modules of a Quasitriangular Hopf Algebra is braided. Hence Quantum Groups

⇒ Braided categories ⇒ Applications, such as solvable lattice models and knot invariants.

1.2 Monoids (Algebras) from Categories of Sets (Vector Spaces)

A quantum group should be a deformation of a group G, typically a Lie group. The quantum

group depends on a parameter q, wherein the classical limit q 7→ 1 the group is recovered. However,

groups are rigid and cannot be deformed this way. The idea is to replace the group by another object

with the same representation theory of G which lives in a category that does allow deformations.

This is the category of Hopf Algebras.
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A monoid in the category of vector spaces can be an algebra.

A monoid in the category of vector spaces can be a bialgebra.

A group in the category of vector spaces can be a Hopf Algebra.

The category of sets in monoidal with unit element I = {1} and monoidal operation ×. Let

η : I → M map 1 7→ 1M and µ : M ×M → M be the multiplication in the monoid. A monoid

can be defined in terms of these in the category of sets, and similarly an alegebra can

be defined in terms of these in the category of vector spaces:

M ×M ×M M ×M A⊗A⊗A A⊗A

M ×M M A⊗A A

1×µ

µ×1

µ

µ⊗1

1⊗µ µ

µ µ

m · 1 = m⇒
M ×M M ×M

M × Id M Id×M M

µ µ
1×η

∼= ∼=

η×1 ⇐ 1 ·m = m

Define a multiplication on A by a · b = µ(a⊗ b), and replace the 3 commutative diagrams above

with M 7→ A, × 7→ ⊗, the first shown above. The diagrams thus mean (ab)c = a(bc), so A is a

ring with identity 1 = η(1K), with η embedding K in the center of A. Thus A is an algebra.

We can improve the description of a monoid in terms of categories via the diagonal map

∆ : M →M ×M :

M M ×M

M ×M M ×M ×M

∆

∆

∆×1

1×∆

M ×M M ×M

M × Id M Id×M M

1×ε ε×1

∼=

∆

∼=

∆

To further develop ∆, we add the τ “flip” map: τ : M ×M →M ×M, τ((x, y)) = (y, x):

M ×M M ×M ×M ×M

M M ×M ×M ×M

M ×M

∆×∆

µ 1×τ×1

∆

µ×µ

(x, y) 7→ (xy, xy)

M ×M I × I

M I

ε×ε

η×η

ε

∆

η

∼=

Dualizing the vector space in the same way, we replace our mondoid with a vector space and

× with ⊗.
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We put all of our maps together to define a bialgebra via the category of vector spaces: Let

H be a vector space. Then we have the following commutative diagrams:

H ⊗H ⊗H H ⊗H H ⊗H H ⊗ I

H ⊗H H H ⊗H H

H ⊗H H ⊗H ⊗H I ⊗H H ⊗H

µ⊗1

1⊗µ µ

1⊗µ

µ

1⊗η

µ ∆

∆ ∆⊗1

∼=

∆ ∆

µ

1⊗∆ η⊗1

µ⊗1

H ⊗H H ⊗H ⊗H ⊗H H ⊗H ⊗H ⊗H

H H ⊗H

µ

∆⊗∆ 1⊗τ⊗1

µ⊗µ

∆

Where the dashed lines represent associativity and unit maps, respectively, and the dotted lines

represent coassociativity and counit maps, respectively. The third diagram is called the Hopf

Axiom.

A group in the category of vector spaces is a Hopf Algebra. Let G be a group, and

let S : G → G be the map S(g) = g−1. We need to express the axiom gg−1 = g−1g = 1 in terms

of maps. We can use the diagonal map, the multiplication map, and the unit/counit maps. So a

Hopf algebra is a bialgebra H with a linear map S : H → H satisfying the additional (self-dual)

axioms:

G G×G G×G H H ⊗H H ⊗H

Id G 1 H

ε

∆

1×S

S×1 µ ε

∆

1⊗S

S⊗1 µ

η

This axiom is self-dual, so reversing all arrows in the definition doesn’t change the Hopf axiom.

1.3 Hopf Algebras from a Group G

There are two ways of obtaining a Hopf algebra from a finite group G.

The group algebra K[G] has comultiplication ∆(g) = g ⊗ g on a basis element g ∈ G and is a

Hopf algebra.

Dually, the ring O(G) of functions on G is a Hopf algebra. The multiplication is pointwise, so

the algebra is commutative. The comultiplication is given by identifying O(G×G) = O(G)⊗O(G),

∆f((g, h)) = f(gh).

We let G be an affine algebraic group over C, and so G(C) of complex points of G is a Lie

Group. Call its Lie Algebra g. The Universal Enveloping Algebra U(g) is an associative ring with

g as a vector subspace. We have

[X,Y ] = XY − Y X (3)
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for X,Y ∈ g, the multiplication is in U(g). This is called universal because if A is any associative

algebra, and ρ : g → A a linear map where ρ([X,Y ]) = ρ(X)ρ(Y ) − ρ(Y )ρ(X), then ρ : U →

A extends to a homomorphism. Elements of g can be thought of as differential operators or

distributions on G concatenated at the identity. If X ∈ G,

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X (4)

Example 2. The Lie Algebra of SL2(C) is the set of matrices with trace 0. It is a 3-dimensional

vector space with generators

X =

0 1

0 0

 , Y =

0 0

1 0

 , H =

1 0

0 −1


The bracket operations are

[X,Y ] = H, [H,X] = 2X, [H,Y ] = −2Y

We have to be careful, though, because the multiplication here is not matrix multiplication but

multiplication in U .

The other way to associate a Hopf algebra with a group is the ring O = O(G(C)) of rational

(polynomial) functions. Unlike the enveloping algebra, this is a commutative algebra, and the

multiplication is encoded in the comultiplication. Let V be an affine algebraic variety and O(V )

its algebra, we can identify

O(V × V ) ∼= O(V )⊗O(V ) (5)

where thus the multiplication morphism M ×M →M corresponds to an algebra homomorphism

∆O → O ⊗O.

1.4 U(g) vs. O(G(C))

Both U(G) and O(G) have deformations that involve q, and the q → 1 limit yields the non-

deformed theory, and q → 0 yields the theory of crystal bases, a rabbit hole all on its own. The

case G = SL(2) is enough for significant applications like the Jones polynomial and the six-vertex

model in statmech.

U(g) is cocommutative, and the multiplication encodes the multiplication of the group.

Remark 1. Cocommutative implies τ ◦∆ = ∆, where τ is the ‘flip’ map.

TheO(G(C)) funtion algebra is commutative, with comultiplication encoding the multiplication

of the group.
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2 Sweedler Notation and Category Theory

2.1 Sweedler’s Notation

Using ordinary ring notation for the multiplication and unit µ and η. Now we can say, for

a, b ∈ H, a · b = µ(a⊗ b), 1H = η(1K). We can use η to identify K with a subring in the center of

H.

Using Sweedler’s Notation, we have

∆(a) =

N∑
i=1

a′i ⊗ a′′i := ∆(a) = a(1) ⊗ a(2) (6)

Coassociativity gives us

(∆⊗ 1H)∆(a) = (1H ⊗∆)∆(a) (7)

a(1)(1) ⊗ a(1)(2) ⊗ a(2) = a(1) ⊗ a(2)(1) ⊗ a(2)(2) (8)

= a(1) ⊗ a(2) ⊗ a(3) (9)

Rewriting the counit axiom in Sweedler’s notation,

H ⊗H H ⊗H

H ⊗ I H I ⊗H H

IH⊗ε ε⊗IH
∼=

∆

∼=

∆

a = a(1)ε(a(2)) = ε(a(1))a(2) (10)

In the same way, we can write

ε(a) = a(1)S(a(2)) = S(a(1))a(2) (11)

If A,B are algebras, so is A ⊗ B with multiplication (a ⊗ b)(a′ ⊗ b′) = (aa′ ⊗ bb′), µA⊗B =

(µA ⊗ µB)(1A ⊗ τ ⊗ 1B). Also, (xy)(1) ⊗ (xy)(2) = x(1)y(1) ⊗ x(2)y(2)

2.2 S(xy)=S(y)S(x)

Lemma 1. S(ab) = S(b)S(a)

Proof. This is similar to the proof that (xy)−1 = y−1x−1: (xy)−1 = (xy)−1xyy−1x−1 = y−1x−1.

Take the Hopf analogue of (xy)−1 = (xy)−1xyy−1x−1 : S(x(1)y(1))x(2)y(2)S(y(3))S(x(3)). The idea

is to proof that his analogue is equal to both S(xy) and S(y)S(x). Also note that ε is a scalar
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valued ring homomorphism, and thus commutes nicely and has the property ε(a)ε(b) = ε(ab).

S(x(1)y(1))x(2)y(2)S(y(3))S(x(3)) (12)

= S(x(1)y(1))x(2)ε(y(2))S(x(3)) (13)

= S(x(1)y(1))x(2)S(x(3))ε(y(2)) (14)

= S(x(1)y(1))ε(x(2))ε(y(2)) (15)

= S(x(1)y(1))ε(x(2)y(2)) (16)

= S(x(1)y(1)ε(x(2)y(2))) (17)

= S((xy)(1)ε((xy)(2))) (18)

= S(xy) (19)

where (13,15) use the counit axiom, (16) uses the fact that ε is a homomorphism, (17) uses the

fact that ε is scalar-valued, and (18) uses the Hopf Axiom:(xy)(1) ⊗ (xy)(2) = x(1)y(1) ⊗ x(2)y(2).

We can also do

S(x(1)y(1))x(2)y(2)S(y(3))S(x(3)) (20)

= S(x(1)(1)y(1)(1))x(1)(2)y(2)(2)S(y(2))S(x(2)) (21)

= S((x(1)y(1))(1))(x(1)y(1))(2)S(y(2))S(x(2)) (22)

= ε(x(1)y(1))S(y(2))S(x(2)) (23)

= ε(x(1))ε(y(1))S(y(2))S(x(2)) (24)

= S(ε(y(1))y(2))S(ε(x(1))x(2)) (25)

= S(y)S(x) (26)

where (29) is due to (8,9) above, (22) is the Hopf Axiom, (23) is the counit axiom, (24) is the fact

that ε is a homomorphism, and (25) is the scalar value. Basically, we took S(x(1)y(1))x(2)y(2)S(y(3))S(x(3))

and collapsed the first 3 factors and the last 4 factors, the same as in the proof (xy)−1 =

y−1x−1.

2.3 Monoidal Categories

Modules over a bialgebra are a monoidal category: if V,W are modules over H, then V ⊗W

is a module over H ⊗H, due to comultiplication. ∆ is an H−homomorphism, we can apply our

module structure to H : a(v ⊗ w) = a(1)v ⊗ a(2)w. Due to coassociativity, U ⊗ (V ⊗W ) has the

same structure as (U ⊗ V )⊗W .

Definition 1. A rigid category is a category where the objects have duals. Let V be an object in
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a monoidal category with unit object I. We have morphisms evV : V ∗⊗V → I, coevV : I → V ⊗V ∗

called evaluation and coevaluation, respectively, that abstract the notion of a right dual. A left dual

functions the same way. These maps have the following axioms:

(1V ⊗ evV ) ◦ (coevV ⊗ 1V ) = 1V , (evV ⊗ 1V ∗) ◦ (1V ∗ ⊗ coevV ) = 1V ∗ (27)

Finite-dimensional modules over a Hopf Algebra are a rigid monoidal category. Let I = K,

V ∗ =Hom(V,K), and evV (v∗ ⊗ v) = v∗(v), evaluating the linear functional v∗ ∈ V ∗ at v. It now

remains to define the coevaluation map K → V ⊗ V ∗. Let vi be a basis of V and v∗i be a basis of

V ∗. Define coevV (a) = a
∑
vi ⊗ v∗i . Once can visualize this as the following diagram, read top to

bottom:

coevV (K) V V ∗

V V ∗ evV (K)

We can further visualize the (1V ⊗ evV ) ◦ (coevV ⊗ 1V ) = 1V , (evV ⊗ 1V ∗) ◦ (1V ∗ ⊗ coevV ) = 1V ∗

axiom by

V V V

V V ∗ V = = V V ∗ V

V V V

2.4 Uniqueness of the Dual

Now we prove the uniqueness of the dual V ∗. Suppose we have another dual Ṽ ∗ with (co)evaluation

maps ẽvV , ˜coevV , and maps ψ : Ṽ ∗ → V ∗, ψ = (ẽvV ⊗ IV ∗)(IṼ ∗ ⊗ coevV ), φ : V ∗ → Ṽ ∗, φ =

(evV ⊗ IṼ ∗)(IV ∗ ⊗ ˜coevV ):

ψ φ

V ∗ Ṽ ∗

V ∗ V Ṽ ∗ Ṽ ∗ V V ∗

Ṽ ∗ V ∗

We can compose ψ and φ to get some insights: ψ ◦φ = (evV ⊗IṼ ∗)(IV ∗⊗ ˜coevV )(ẽvV ⊗IV ∗)(IṼ ∗⊗

coevV ) = (evV ⊗ IV ∗)(IV ∗ ⊗ IV ⊗ ẽvV ⊗ IV ∗)(IV ∗ ⊗ ˜coevV ⊗ IV ⊗ IV ∗)(IV ∗ ⊗ coevV ):
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V ∗ V ∗

V V Ṽ ∗ = V V ∗

Ṽ ∗ V V ∗ V Ṽ ∗ V

V ∗ V ∗ V V ∗

Switch ẽvV and ˜coevV , and, using the fact that ⊗ is a bifunctor, we use the axioms twice to

conclude ψ ◦ φ = IV ∗ and φ ◦ ψ = IṼ ∗ . Thus ψ and φ are inverse isomorphisms, proving that the

dual is unique.

2.5 Rigid Categories

Recall that a rigid category is a category where every object has a dual. Suppose that V,W

are objects in a rigid category and f : V → W is a morphism. Define a morphism f∗ : W ∗ → V ∗

by f∗ = (evW ⊗ 1V ∗)(1W∗ ⊗ f ⊗ 1V ∗)(IW∗ ⊗ coevV ):

V W ∗ W ∗ W ∗

V V ∗ = = W ∗ ⊗ V ⊗ V ∗

W ∗ W W ∗ ⊗W ⊗ V ∗

W V ∗ V ∗ V ∗

f f∗

IW∗⊗coevV

f IW∗⊗f⊗IV ∗

evW⊗IV ∗

3 Braided categories, quasitriangular Hopf algebras, quan-

tized enveloping algebras, and Reidemeister moves.

For C a monoidal category, we have natural isomorphisms (A⊗B)⊗C ∼= A⊗(B⊗C) for A,B,C

objects in C. Denote either as A⊗B⊗C. This identification doesn’t cause any problems, as shown

by MacLane’s Coherence Theorem. In a braided category there are braidings cA,B : A⊗B → B⊗A

where cA,B ◦ cB,A is not necessarily the identity. To see this, look at an actual braiding of two

strands. This will create a twist. I.e. cA,B , c−1
B,A are distinct isomorphisms. These associativity

conditions are natural, i.e.

(A⊗B)⊗ C A⊗ (B ⊗ C)

(A′ ⊗B′)⊗ C ′ A′ ⊗ (B′ ⊗ C ′)

(α⊗β)⊗γ

∼=

α⊗(β⊗γ)

∼=

The first axiom of a braided category is the braidings have to be natural, i.e. for α : A →
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A′, β : B → B′,

(β ⊗ α) ◦ cA,B = cA′,B′ ◦ (α⊗ β) (28)

The cA,B morphism is sometimes called the R-matrix. Assume it satisfies

A⊗B ⊗ C B ⊗ C ⊗A

B ⊗A⊗ C
cA,B⊗1C

cA,B⊗C

1B⊗cA,C

,
A⊗B ⊗ C C ⊗A⊗B

A⊗ C ⊗B
1A⊗cB,C

cA⊗B,C

cA,C⊗1B

The Yang-Baxter Equation is true in a braided monoidal category. Visualize the braid-

ings of 3 strands to convince yourself that this is true.

We have the slogan modules over a quasitriangular bialgebra are a braided category.

A quasitriangular/braided Hopf Algebra was introduced by Drinfeld in his 1986 ICM lecture.

3.1 Quasitriangularity

Let R ∈ H ⊗H be an invertible element, and U, V be H−modules with the flip map τ .

Lemma 2. Suppose we have x ∈ H such that R∆(x)R−1 = τ∆(x). Then for all U, V , cu⊗v =

τR(u⊗ v) is an H−module homomorphism.

Proof. R∆(x)R−1 = τ∆(x) ⇒ R∆(x) = τ∆(x)R. Denote R = R(1) ⊗ R(2). Using Sweedler’s

Notation,

R(1)x(1) ⊗R(2)x(2) = x(2)R
(1) ⊗ x(1)R

(2) (29)

. Now suppose u ⊗ v ∈ U ⊗ V . We want to show τR(x(u ⊗ v)) = xτR(u ⊗ v). Apply the map

a⊗ b 7→ bv ⊗ au in (29) and we are done.

Denote R12 = R(1) ⊗R(2) ⊗ 1R, R13 = R(1) ⊗ 1R ⊗R(2), R12 = 1R ⊗R(1) ⊗R(2).

Definition 2. A quasitriangular Hopf Algebra is a Hopf Algebra with an R ∈ H ⊗ H such

that

R∆(x)R−1 = τ∆, (∆⊗ 1)R = R13R23, (1⊗∆)R = R13R12 (30)

called the universal R-matrix.

Lemma 3. The axiom (1⊗∆)R = R13R12 is equivalent to the axiom
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A⊗B ⊗ C B ⊗ C ⊗A

B ⊗A⊗ C
cA,B⊗1C

cA,B⊗C

1B⊗cA,C

Proof. Define the map θ(a⊗ b⊗ c) = b⊗ c⊗ a. First we argue that the top arrow is

cA,B⊗C(a, b, c) = θ((1⊗∆)R)(a⊗ b⊗ c) (31)

. Treat d := a⊗ b as a unit. Consider cA,B⊗B(a⊗ d) = τR(a⊗ d) = τ(R(1)a⊗ R(2)d), where θ is

the τ map in this case. Using the fact that elements of the Hopf Algebra on a tesnor product of

modules is through the tensor product, so we get (31) as we recognize R(2)d = ∆(R(2))(a⊗ b).

Now we want to show that θ((1 ⊗ ∆)R) = (1B ⊗ τ)R12(τ ⊗ 1C)R12. We know that (τ ⊗

1C)R23(τ ⊗ 1C) = R13 and (1B ⊗ τ)(τ ⊗ 1C) = θ. Thus

(1B ⊗ τ)R23(τ ⊗ 1C)R12 = (1B ⊗ τ)(τ ⊗ 1C)R13R23 = θR13R23 (32)

One axiom for a quasitriangular Hopf algebra is (1⊗∆)R = R13R23. The commutativity of

A⊗B ⊗ C B ⊗ C ⊗A

B ⊗A⊗ C
(τ⊗1C)R12

θ((1⊗∆)R)

(1B⊗τ)R23

follows and we have proved an axiom of a braided category.

The mirror image and naturality are easy and, canonically, “left to the reader.”

3.2 An Example

Consider the group G = Zn. Let H = C[G] be the group algebra and let q = e2iπ/n(the nth root

of unity). It is a Hopf algebra with ∆(ga) = ga ⊗ ga. Define R = 1
n

∑−ab
a,b mod n g

a ⊗ gb ∈ H ⊗H.

Lemma 4. R−1 = 1
n

∑
a,b mod n q

abga ⊗ gb.

Proof. The product of the elements is 1
n2

∑
a,b,c,d mod n q

−ab+cdga+c ⊗ gb+d =

1
n2

∑
t,u(

∑
a,b a

−ab+(t−a)(u−b))gt ⊗ gu. The inner sum is 0, or n2 if t = u = 0.

Theorem 1. H is quasitriangular with universal R-matrix R.

Proof. R∆R−1 = τ∆ is trivial due to cocommutativity and commutativity. R13R12 = 1
n2 (

∑
a,b q

−abga⊗

1⊗ gb)(
∑
c,d q

−cdgc⊗ gd⊗ 1) = 1
n2

∑
a,b,c,d q

−ab−cdga+c⊗ gd⊗ gb = 1
n2

∑
t,b,d(

∑
a q
−ab−(t−a)d)gt⊗

gd⊗gb. The sum is 0 unless b = d. Thus this becomes 1
n

∑
t,b(

∑
a q
−tb)gt⊗gb⊗gb = (1⊗∆)R

This proves R13R12 = (1⊗∆)R, and R13R23 = (∆⊗ 1)R is the same deal.
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3.3 Quantized Enveloping Algebras

There are two kinds of Hopf algebras that can arise from a Lie Group: The affine alge-

bra/coordinate ring and the enveloping algebra, and both have q−(quantum) deformations. If

g is a semisimple Lie algebra, and H = Ug(g) is the quantized enveloping algebra, R lives in a

completion of H. Thus, H isn’t a quasitriangular Hopf algebra. If q is a root of unity then Uq(g)

has a finite-dimensional quotient that is a QHA.

3.4 Example

Recall the Lie Algebra sl2 has basis E =

0 1

0 0

 , F =

0 0

1 0

 , H =

1 0

0 −1

, with

[E,F ] = H, [H,E] = 2E, [H,F ] = −2F . To construct the quantized algebra we replace H with an

element that can be thought of K :=

q 0

0 q−1

, such that K yields KEK−1 = q2E,KFK−1 =

q−2F,EF − FE = K−K−1

q−q−1 . This defines Uq(sl2).

Remark 2. It isn’t possible to set q = 1 to recover U(sl2, but recovering can be done. See Kassel’s

Quantum Groups.

There is an algebra homomorphism ∆ : H → H ⊗ H such that ∆(K) = K ⊗ K,∆E =

E ⊗K + 1 ⊗ E,∆(F ) = F ⊗ 1 + K−1 ⊗ F . These images indeed satisfy the relations, so this is

a homomorphism. Define a counit ε to C where ε(K) = 1, ε(E) = ε(F ) = 0. Define the antipode

S such that S(K) = K−1, S(E) = −E,S(F ) = −F . Thus we have a Hopf algebra structure. Let

q = e2iπ/n, n odd. Then En, Fn,Kn are central, and quotienting them yield the finite-dimensional

Hopf algebra uq(sl2). It is quasitriangular with

R =
1

n
(

n−1∑
a,b=0

q−2abKa ⊗Kb)

n−1∑
r=0

(q − q−1)r

[r]q−2 !
Er ⊗ F r, (33)

[r]q−21 ! =

r∏
t=1

[t]q−2 , [r]q−2 =
1− q−2r

1− q−2
(34)

4 Knots

A knot is a smooth simple closed curve in S3. A link is a disjoint union of a finite number of

smooth simple closed curves in S3. To avoid wild knots we only consider knots that are equivalent

by ambient isotopy to a smooth curve or a finite union of segments. A major issue is to determine

when two knots are equivalent by ambient isotopy.
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4.1 Reidemeister Moves

A Reidemeister move I undoes a twist. In a braided category, a twist is a map V → V ∗ →

V ∗∗. An r-move I sets V ∗∗ = V , which in a braided category is not the case.

A Reidemeister move II undoes an untwisted overlap.

A Reidemeister move III is the braid group equivalence.

We want to work with framed knots, which are knots with an associated normal vector field.

If we flatten the knot out in the direction of the vector field it becomes a ribbon. They can be

projected onto the R2 plane and it can twist. Thus framed knots are related by r-moves II and III

but not I. Instead, r-move I yields a double twist.

With Lecture 2 in mind, we can find evV when V = U ⊗W .

evU⊗W = evW (1W∗ ⊗ evU ⊗ 1W ) (35)

coevU⊗W = (1U ⊗ coevW ⊗ 1U∗)coevU (36)

Lemma 5. (evV ⊗ 1W )(1V ∗ ⊗ cW,V ) = (1W ⊗ evV )(c−1
W,V ∗ ⊗ 1V )

Proof.
W ⊗ V ∗ ⊗ V V ∗ ⊗ V ⊗W K ⊗W

V ∗ ⊗W ⊗ V

cW,V ∗⊗V

cW,V ∗⊗1V

evV ⊗1W

1V ∗⊗cW,V

5 (Framed) tangles, naive trace and ribbon trace.

5.1 Category theory of low-dimensional topology

The generalization of braids, knots and links are called tangles. A tangle is a collection

of circles and arcs piecewise smoothly immersed in R2 × [0, 1] with endpoints on the planes

R2 × {0},R2 × {1}. Let m,n be nonnegative integers. Fix m points in R2 × {0} and fix n

points in R2 × {1}. These are the endpoints of the arcs, and define a tangle of type (m,n). The

category of tangles have objects in N. Think of a tangle (m,n) as a morphism m → n. Tangles

are drawn with m at the top and projected to R2. Morphisms are composed by gluing (k, 0, 1) to

k′, 0, 1, 1 ≤ k ≤ n, 1 ≤ k′ ≤ m′ and rescaling to fit in our 1-interval.

The monoidal structure identifies m1 and m2 with m1 + m2. Given tangles Hom(m1, n1) and

Hom(m2, n2), we can compose them to get a tangle in Hom(m1 + m2, n1 + n2). We can define

m∗ = m, giving the tangle category a rigid structure. For instance, the coevaluation map form = 2

is given by Hom(0, 2 ⊗ 2∗), an object in Hom(0,4). One can introduce a braiding by specifying

morphisms in Hom(m⊗ n, n⊗m), that is, taking m strands and pulling them over n strands. A

framed tangle associates to each strand a family of normal vectors. Extend the strand in the

direction of these vectors and one has a ribbon. Framed tangles form a braided monoidal category.
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One can try to model a knot in terms of a rigid braided category. Assume V ∗∗ ∼= V , so

coevV ∗ : V ∗ ×V ∗∗ → k gives V ∗ × V → K. Interprect caps and cups as evaluation and coevalua-

tion, a knot is a morphism K → K.

The simplest knot is a circle coevV ◦ evV ∗ : K → V ⊗ V ∗ → K. More generally we can take

an endomorphism of V and calculate its trace: K coevV−−−−→ V ⊗ V ∗ f⊗1V ∗−−−−→ V ⊗ V evV ∗−−−→. In the

symmetric category of vector spaces, if f : V → V, g : W →W, tr(f ⊗ g) = tr(f)tr(g)

Trying to make a trace for a braided category doesn’t work so well. We create V ⊗ V ∗ with

coevV . K → V ⊗ V ∗
cV,V ∗−−−−→ V ∗ ⊗ V → K. Diagrammatically, this looks like a figure eight with,

in the intersection, the left strand on top (the left strand represents V ). We find the trace for a

tensor product, the trace is not multiplicative. Draw this out if you don’t believe me. This points

to the fact that we need something else to make a good theory.

In a rigid braided category, V, V ∗∗ are naturally isomorphic. There are potentially many iso-

morphisms between increasingly complicated tangles. For example,

uV : V
1V ⊗coevV ∗−−−−−−−→ V ⊗ V ∗ ⊗ V ∗∗

cV,V ∗⊗1V ∗∗−−−−−−−−→ V ∗ ⊗ V ⊗ V ∗∗ evV ⊗1V ∗∗−−−−−−−→ V ∗∗ (37)

is an isomorphism with

u−1
V : V ∗∗

1V ∗∗⊗evV−−−−−−−→ V ∗∗ ⊗ V ⊗ V ∗
cV ∗∗,V ⊗1V ∗−−−−−−−−→ V ⊗ V ∗∗ ⊗ V ∗ 1V ⊗evV ∗−−−−−−→ V (38)

One can easily diagrammatically check that uV u−1
V = u−1

V uV = 1V . Consider another isomorphism

V ∗∗ → V NOT equal to u−1
V :

vV : V ∗∗
1V ∗∗⊗coevV−−−−−−−−→ V ∗∗ ⊗ V ⊗ V ∗

1V ∗∗⊗cV ∗,V−−−−−−−−→ V ∗∗ ⊗ V ∗ ⊗ V evV ∗⊗1V−−−−−−→ V (39)

Diagrammatically, vV , u−1
V correspond to a loop where the crossover in the diagram is over and

under, respectively. The difference between vV , u
−1
V is clear if V = U ⊗ W . Illustrate this to

convince yourself. Both uV , vV are counter-clockwise twists 2π. Composing them, we get a 4π

twist. We can solve many problems such as the non-multiplicativity of the trace if we had a map

V → V that is a 2π twist. With multiple compositions, we can construct morphisms V → V that

are twistings multiples of 4π.

But what we need is a 2π twist. Thus we need a θ : V → V such that θ2 = vV ◦ uV . Thus we

can construct a multiplicative trace:
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θ−1 V ∗

V, f

enter picture here

Be careful, though. θ−1
U⊗W isn’t a twist in U ⊗W , it’s a twist in U and a twist in W , with the

strands then braided together twice.

picture here

A braided category with a twist is called a ribbon category. We want naturality, such that if

f : V → W, θW f = fθV , in partiulcar this means, for evals and coevals, we can move θ back and

forth. We also must have

θ−1
U⊗W = cW,U ◦ cU,W ◦ θ−1

U ⊗ θ
−1
W = θ−1

U ⊗ θ
−1
W ◦ cW,U ◦ cU,W (40)

Now we must assume that if I is the unit object of the category, then θI = 1I , θV ∗ = θ∗V

The definition of a category gives all we need for a multiplicative trace. It’s an endomorphism

of I.

6 Tangle and ribbon categories. Maps and elements of qua-

sitriangular Hopf algebras.

For the tangle category, objects are nonnegative integers, and we can compose their diagrams

by composition and by tensor. Given tangles T ∈ Hom(a, b) and U ∈ Hom(b, c), we define their

composition by attaching the b endpoints of T with the b starting points and rescaling to R2×[0, 1].

We define their tensor product as the natural diagram coming from shifting the b endpoints of U to

the right of the a endpoints of T . A framed tangle is our first example of a ribbon category. Recall

that a framed tangle adds a normal vector field to each curve of the tangle. At the endpoints of

the arcs adjoining the boundary, the direction is to be (0,-1,0).

6.1 Ribbon Axioms and θ2V

We now prove that θ2 = uV ◦ vV , for uV , vV as before. By the way, uV , vV commute. We begin

by taking the ribbon axiom θ−1
U⊗W = θ−1

U ⊗ θ
−1
W ◦ cU,W ◦ cW,U . This is equivalent to θU ⊗ θW =

15



cW,U ◦ cU,W ◦ θU⊗W . By the adjointness of θ and the straightening property of the dual,

V V

θV = V V ∗

θV θV θV ∗

V V

we can discard θV⊗V ∗ using naturality. Representing the unit object as I, we use the naturality

to move the θ map past the coev map.

I I

coevV = θI

θV⊗V ∗ coevV

V ⊗ V ∗ V ⊗ V ∗

Recall the axiom that θI = 1I . Thus we’ve proved

V V V ∗ V

θV = V ∗ V

θV V V ∗ V

V V

In proving that this is equivalent to uV ◦vV , use the coevaluation and evaluation crossing identities:

(evV ⊗ 1W )(1V ∗ ⊗ cW,V ) = (1W ⊗ evV )(c−1
W,V ∗ ⊗ 1V ).

V ∗ W V V ∗ W V

evV W = W evV

W W

coevV W = W coevV

V W V ∗ V W V ∗

We can rewrite uV as the following diagram.
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V

V ∗ V ∗∗ coevV ∗ V

V ∗ V = V ∗ V V ∗∗

V ∗∗

In the same way, we rewrite vV uV as the following:

V V

= V ∗ V ∗∗ V

V ∗ V V ∗∗ V ∗ V V

V V

vV

where we used the naturality of the braiding. Now we sub in vV , and use the straightening property

of the dual:
V ∗∗ V ∗∗

V ∗ V ∗∗ V V ∗ = V V ∗

V ∗ V ∗∗

evV ∗ V V

Then use the evaluation crossing identity and we’ve proved that this is equal to

V V ∗ V

V ∗ V

V V ∗ V

V

and thus to θ2.

6.2 Quasitriangular Hopf Algebras

For a quasitriangular Hopf Algebra, recall that the category of modules over QTHAs are braided

monoidal categories. Recall the axiom τ∆(x) = R∆(x)R−1. For R = 1, this means that H is

cocommutative. Generally, the existence of R makes H into a coboundary Hopf algebra. Writing

the braid axioms,

(∆⊗ 1)R = R13R23, (1⊗∆)R = R13R12 (41)
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In Sweedler notation, we can write

(∆⊗)(R(1))⊗R(2) = R
(1)
(1) ⊗R

(1)
(2) ⊗R

(1) (42)

In keeping track of the second copy of R, we add a tilde to it:

R
(1)
(1) ⊗R

(1)
(2) ⊗R

(2) = R(1) ⊗ R̃(1) ⊗R(2)R̃(2), (43)

R(1) ⊗R(2)
(1) ⊗R

(2)
(2) = R(1)R̃(1) ⊗ R̃(2) ⊗R(2) (44)

Recall that scalars can be moved around:

x(1)ε(x(2)) = ε(x(1))x(2) = x (45)

Lemma 6. (1⊗ ε)R = (ε⊗ 1)R = 1H⊗H

Proof. In Sweedler notation, this is R(1) ⊗ ε(R(2)) which, since ε is scalar-valued, is equal to

R(1)ε(R(2))⊗1H . We want to show, then, that R(1)ε(R(2)) = 1H . We have that (ε⊗1)∆(x) = 1⊗x.

Then (ε⊗ 1⊗ 1)(∆⊗ 1)R = 1⊗R(1)⊗R(2) = R23. Plug in the braid identity (∆⊗ 1)R = R13R23.

Since R23 is invertible, we have, since (ε⊗ 1⊗ 1)(∆⊗ 1)R = (ε⊗ 1⊗ 1)R13R23, (ε⊗ 1⊗ 1)R13 =

1H⊗H⊗H . Thus (ε⊗ 1)R = 1, and the case (1⊗ ε)R = 1 is similar.

Theorem 2. R12R23R13 = R23R13R12

Proof. Apply the axiom τ∆(x) = R∆(x)R−1. Use the fact that R23R13 = (τ ⊗ 1)R13R23 =

R12R23R13R
−1
12 We get (τ⊗1)(∆⊗1)R = R12((∆⊗1)R)R−1

12 . Rearranging yields the Yang-Baxter

equation we were trying to prove.

Now we prove the identities

(S ⊗ 1)R = R−1, (1⊗ S)R−1 = R (46)

These imply (S ⊗ S)R = R

7 The standard module of Uq(sl2) and its R-matrix, the 6-

The following representation theories are all the same:

Finite-dimensional representations of SL(2,R)

Finite-dimensional representations of SU(2)

Finite-dimensional analytic representations of SL(2,C)
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Finite dimensional complex representations of their Lie algebras: sl2(R), su2, sl2(C)

The enveloping algebras of these Lie algebras

The universal quantized enveloping algebra Uq(sl2),

where the categories have the same simple objects, but Uq(sl2) has an interesting comultiplication

and R-matrix, so they are not the same in terms of braided categories. Each of the above categories

are semisimple, and there is one unique irreducible representation in every dimension. The two-

dimensional standard representation V generates the category, i.e. every irreducible is a submodule

of ⊗kV for some k: the k-dimensional irreducible submodule is the symmetric power Symk−1(V ).

The standard module of sl2 has two basis vectors X,Y . With respect to this basis,

E =

0 1

0 1

 , F =

0 0

1 0

 , H =

1 0

0 −1


where H = [E,F ]. For the 4D irreducible, we have

E =



0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0


, F =



0 0 0 0

3 0 0 0

0 2 0 0

0 0 1 0


, H =



3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 3


The standard module of Uq(sl2) is given similarly:

E =

0 1

0 1

 , F =

0 0

1 0

 , H =

q 0

0 q−1



E =



0 1 0 0

0 0 [2] 0

0 0 0 [3]

0 0 0 0


, F =



0 0 0 0

[3] 0 0 0

0 [2] 0 0

0 0 1 0


, H =



q3 0 0 0

0 q 0 0

0 0 q−1 0

0 0 0 q−3


for [n] = qn−a−n

q−q−1 , the ‘quantum integer.’
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