
Algebraic Topology Refresher Problems

Alec Lau

Note: These are the only problems I had saved before I decided to make a page to preserve

this stuff. Because there is so much machinery in algebraic topology, I have saved some of these

problems as a refresher for whenever I return to it, as said machinery is very forgettable, beautiful

though it may be. Also, these problems were done open-book and open-past-homework with

Hatcher’s “Algebraic Topology” textbook, so there may be some steps I skipped over.

Denotation: RPn is the space of all lines through the origin in Rn, Sn is the n−dimensional

sphere, and Dn is the n−dimensional disc.

All problems were written by Professor Ralph Cohen, saxophone extraordinaire.

Question 1. Is every covering space of RP 2 × RP 3 isomorphic to a product of covering spaces

p1 × p2 : X̃1 × X̃2 → RP 2 × RP 3, where p1 : X̃1 → RP 2 and p2 : X̃2 → RP 3? Why or why not?

Proof. Let Y be the covering space of RP 2×RP 3. If there exists an isomorphism f : Y → X̃1×X̃2,

then from the relations p1 = p2f, p2 = p1f , it follows that (p1 × p2)∗π1(X̃1 × X̃2) ∼= p∗(Y ) due to

the induced isomorphisms. Since RP 2 and RP 3 are path-connected, we know from the product

topology that a map f : Y → RP 2 × RP 3 is continuous if and only if the maps g : Y → RP 2, h :

Y → RP 2 defined by f = g × h are continuous. Therefore a loop in RP 2 ×RP 3 is equivalent to a

pair of loops in RP 2 and RP 3, and furthermore a homotopy on the product space is equivalent to

a pair of homotopies on the corresponding components. Thus there exists a bijection

π1(RP 2 × RP 3) ∼= π1(RP 2)× π1(RP 3) (1)

given by

[f ] 7→ ([g], [h]) (2)

Next we compute the homology groups of RPn, n ∈ {2, 3}.

RPn is topologized as the quotient space Rn+1 − {0} under the equivalence relation v ∼ λv for

scalars λ 6= 0, so we can thus restrict to vectors of length 1, so RPn = Sn/(v ∼ −v). Thus RPn is

the quotient space of a hemisphere Dn with antipodal points of ∂Dn identified. Since ∂Dn with

antipodal points identified is just RPn−1, we see that RPn is obtained from RPn−1 by attaching
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an n−cell, with the quotient projection Sn−1 → RPn−1 as the attaching map. By induction on n,

RPn has a CW structure e0 ∪ e1 ∪ ... ∪ en with one cell ei in each dimension i ≤ n. To compute

the boundary map dk we compute the degree of the composition

Sk−1 ϕ−→ RP k−1 q−→ RP k−1/RP k−2 = Sk−1 (3)

with q the quotient map. The map qϕ is a homeomorphism when restricted to each component

of Sk−1 − Sk−2, and these two homeomorphisms are obtained from each other by precomposing

with the antipodal map of Sk−1, which has degree (−1)k. Hence degqϕ = deg(1) + deg(-1) = 1 +

(−1)k, and so the boundary maps dk is either 0 or multiplication by 2, depending on whether k is

odd or even. Thus the cellular chain complex for RPn is

0→ Z 2−→ Z 0−→ ...
2−→ Z 0−→ Z 2−→ Z 0−→ Z→ 0 if n is even (4)

0→ Z 0−→ Z 2−→ ...
2−→ Z 0−→ Z 2−→ Z 0−→ Z→ 0 if n is odd (5)

(6)

It follows that

Hk(RPn) =



Z if k = 0 and for k = n odd

Z2 if k = odd, 0 < k < n

0 otherwise

(7)

Thus we know that H1(RP 2) ∼= H1(RP 3) ∼= Z2. We know from homework 4 that H1 is the

abelianization of π1 (since RPn is path-connected and nonempty), but a group with cardinality 2

must be isomorphic to Z2 to have the group axioms still hold. Thus, π1(RP 2) ∼= π1(RP 3) ∼= Z2,

and π1(RP 2 × RP 3) ∼= Z2 × Z2. RP 2 and RP 3 are path-connected, and are manifolds, and so

are locally path-connected semi-locally simply-connected as well. Thus we can apply the Galois

Correspondence Theorem to say that, for every subgroup H of π1(RP 2 × RP 3) ∼= Z2 × Z2, there

is an isomorphism class of covering spaces Y such that p∗(Y ) ∼= H, therefore all covering spaces of

RP 2 × RP 3 have their fundamental groups as subgroups of Z2 × Z2.
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The subgroups of Z2 × Z2 are the trivial subgroup (0,0), and groups with generator (1,0),

(0,1), and (1,1). I claim that there is no pair of maps p1 : X̃1 → RP 2, p2 : X̃2 → RP 3 such

that (p1 × p2)∗(X̃2 × X̃3) ∼= {(0, 0), (1, 1)}. We see that |{(0, 0), (1, 1)}| = 2. By Lagrange’s

Theorem for any subgroup of this group must have cardinality that divides 2. Since 2 is prime,

the only subgroup in it has cardinality 1 and is thus is the trivial subgroup. Thus, if we have

π1(X̃1)×π1(X̃2) ∼= {(0, 0), (1, 1)}, a subgroup π1(X̃1)×0 ∼= 0 and another subgroup 0×π1(X̃2) ∼= 0.

Thus both π1(X̃1), π1(X̃2) are trivial subgroups, and it is impossible for f((0, 0)) 7→ (1, 1) if f is an

isomorphism. If, without loss of generality π1(X̃1) × 0 were the whole group, this has cardinality

2, but the group is {(0, 0), (1, 0)}, a different subgroup corresponding to a different covering space.

Thus, {(0, 0), (1, 1)} � π1(X̃1) × π1(X̃2), so not all covering spaces of RP 2 × RP 3 are isomorphic

to a product of each summand’s covering space.

Question 2. Let X = RP 2∨S3 and Y = RP 3. Prove that the homology and cohomology groups of

X and Y are isomorphic with any coefficients, but that X and Y do not have the same homotopy

type.

Proof. From the above, we know that the chain complex for RP 3 is

0→ Z 0−→ Z 2−→ Z 0−→ Z→ 0 (8)

With any G coefficients, this becomes

0→ G
0−→ G

2−→ G
0−→ G→ 0 (9)

so we have

H0(RP 3;G) ∼= G,H1(RP 3;G) ∼= G/2G,H2(RP 3;G) ∼= 0, H3(RP 3;G) ∼= G, (10)

H0(RP 2;G) ∼= G,H1(RP 2;G) ∼= G/2G,H2(RP 2;G) ∼= 0 (11)
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For n > 0 take (X,A) = (Dn, Sn−1) so X/A = Sn. The terms H̃i(D
n) in the long exact

sequence for this pair are zero since Dn is contractible. Exactness of the sequence then implies

that the maps H̃i(S
n)

∂−→ H̃i−1(Sn−1) are isomorphisms for i > 0 and that H̃0(Sn) = 0 By

induction on n, starting with the case of S0, we see that H̃n(Sn) ∼= Z and H̃i(S
n) = 0 for i 6= n.

Thus H1(S3;G) ∼= H2(S3;G) ∼= 0, H3(S3) ∼= G), due to the equivalence of H̃n and Hn for n > 0.

Since S3,RP 2 are both path-connected and nonempty, S3∨RP 2 is path-connected and nonempty.

By definition, H0(S3 ∨ RP 2) = C0(S3 ∨ RP 2)/Im ∂1 since ∂0 = 0. Define a homomorphism

ε : C0(S3 ∨ RP 2) → Z by ε(
∑
i niσi) =

∑
i ni. This is obviously surjective since S3 ∨ RP 2 is

nonempty. Ker ε = Im ∂1 since S3 ∨ RP 2 is path-connected, and thus ε induces an isomorphism.

We conclude that H0(S3 ∨ RP 2;G) ∼= G. Since reduced homology is the same as homology

relative to a basepoint, we know that, for n > 0,

H̃n(S3 ∨ RP 2) ∼= Hn(S3 ∨ RP 2) ∼= Hn(S3)⊕Hn(RP 2) (12)

Thus we have H1(S3 ∨ RP 2;G) ∼= G/2G,H2(S3 ∨ RP 2;G) ∼= 0, H3(S3 ∨ RP 2;G) ∼= G. These

are the same (up to isomorphism) homology groups as RP 3.

In calculating cohomology for anyG coefficients, we notice thatHn(X;G) ∼= Hom(Hn(X;Z), G)⊕

Ext(Hn−1(X;Z), G).

Lemma 1. Hom(Z, G) ∼= G, Hom(G/2G,G) ∼= 0

Proof. By mapping 1 to each element ofG, we get a cardinality ofG. Since this is a homomorphism,

the structure of the image is preserved, and fg(n) = f(n)?g(n), where ? is the group operation ofG.

Since every element of the group is hit in the image, and the composition of these homomorphisms

is mapped to the group operation, we have all elements of G following the same structure of G,

and thus is isomorphic to G.

In order for there to be a nontrivial homomorphism, orders of elements must match from G/2G

to G. However, this is not the case, as we mod out by 2G, so no generator of G/2G has the same

order as an element in G. Thus, the only homomorphism possible is the trivial homomorphism.

Using this, we calculate cohomology for RP 3, and, using the rules of Ext on page 195 of Hatcher,
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we find

H0(RP 3;G) ∼= G,H1(RP 3;G) ∼= 0⊕ Ext(Z, G) ∼= 0⊕ 0 ∼= 0, (13)

H2(RP 3;G) ∼= 0⊕ Ext(Z2, G) ∼= 0⊕G/2G ∼= G/2G, (14)

H3(RP 3;G) ∼= G⊕ 0 (15)

We also have

Hn(S3 ∨ RP 2;G) ∼= Hom(Hn(S3 ∨ RP 2;Z), G)⊕ Ext(Hn−1(S3 ∨ RP 2;Z), G) (16)

Since the homology groups are isomorphic, the cohomology groups are isomorphic as well.

If we can prove H∗(RP 2∨S3;Z2) � H∗(RP 3;Z2), then this means the spaces are not homotopy

equivalent. Plug in G = Z2. From Example 3.8 in Hatcher, we have H∗(RP 2;Z2) ∼= Z2[α]/(α3),

and H∗(RP 3;Z2) ∼= Z2[β]/(β4), where |α| = |β| = 1. Suppose we have β ∈ H1(RP 3;Z2). Then

β ^ β = β2 ∈ H2(RP 3;Z2), and β2 ^ β = β3 ∈ H3(RP 3;Z2) ∼= Z2, and β3 6= 0. Noticing

that H1(RP 2 ∨ S3) ∼= H1(RP 2) ⊕H1(S3), we have (α, 0) ∈ H1(RP 2 ∨ S3). Suppose there is an

isomorphism f : RP 2 ∨ S3 → RP 3. Then for α′ = f(β) ∈ H1(RP 2;Z2), and for a = f(β2) ∈

H2(RP 2;Z2). We now have (α′, 0) ^ (a, 0) = (α′a, 0) ∈ H3(RP 2 ∨ S3). But H3(RP 2;Z2) ∼= 0, so

α′a = 0. But since f is a ring isomorphism, then f(β3 6= 0) = α′a = 0. Since f maps a nonzero

element to 0, it cannot be an isomorphism, so the cup product structures of RP 2 ∨ S3 and RP 3

are not homotopically equivalent.

Question 3. Let Mn be a closed, path connected, orientable manifold. Let x ∈ U ⊂ M where U

is an open neighborhood homeomorphic to Rn. Consider the “pinch map,” p : Mn → Sn defined as

the composition

p : Mn quotient−−−−−→Mn/(Mn − U)
homeo−−−−→ Sn (17)
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Show that

p∗ : Hn(Mn;Z)→ Hn(Sn;Z) (18)

is an isomorphism.

Proof. Since M is closed and path-connected, we can apply Theorem 3.26 in Hatcher to conclude

that Hn(M) ∼= Hn(M,M − x). Hatcher states that the isomorphism between the two factors

though Hn(M,M −U) for U any neighborhood in M containing x. This is because the homomor-

phism i∗ : Hn(M,M − U) → Hn(M,M − x) induced by inclusion is bijective, since X − U is a

deformation retract of X − x. By excision, Hn(X,X − U) ∼= Hn(Rn,Rn − U) ∼= Hn(Rn,Rn − x).

Since Rn is contractible, this is isomorphic to Hn−1(Rn − U). The second map is isomorphic for

any x ∈ U , because Rn − U and Rn − x deformation retract onto a sphere centered at x. Thus

Hn(M) ∼= Hn(M,M − U).

We notice that (M,M − U) is a good pair; Simply take an open cover ε-thick covering the

boundary of U , and add this to M − U . Because U ∼= Rn, the overlap of our covering with U can

easily be deformation retracted until we are left with M −U . Since (M,M −U) is a good pair, we

can have a neighborhood V be a neighborhood of U in M that deformation retracts onto U . We

have a commutative diagram

Hn(M,U) Hn(M,V ) Hn(M − U, V − U)

Hn(M/U,U/U) Hn(M/U, V, U) Hn(M/U − U/U, V/U − U/U)

q∗ q∗ q∗

The upper left horizontal map is an isomorphism since in the long exact sequence of the triple

(M,V,U) the groups Hn(V,U) are zero for all n, because a deformation retraction of V onto

U gives a homotopy equivalence of pairs (V,U) ∼= (U,U), and Hn(U,U) = 0. The deformation

retraction of V onto U induces a deformation retraction of V/U onto U/U so the same argument

shows that the lower left horizontal map is an isomorphism as well. The other two horizontal

maps are isomorphisms directly from excision. The right-hand vertical map q∗ is an isomorphism

since q restricts to a homeomorphism on the complement of U . From the commutativity of the

diagram it follows that the left q∗ map is an isomorphism. We see then that Hn(M,M − U) ∼=
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Hn(M/(M − U), (M − U)/(M − U)) ∼= Hn(M/(M − U)). Thus Hn(M) ∼= Hn(M/(M − U)).

Since M/(M −U) is homeomorphic to Sn, they better have isomorphic homology groups. Call the

isomorphism induced by the homeomorphism between Hn(M/(M − U)) and Hn(Sn) g, and the

isomorphism between Hn(M) and Hn(M/(M − U)), shown via the diagram. Now we have that

p∗ := f ◦ g, a composition of isomorphisms, so p∗ : Hn(M)→ Hn(Sn) is an isomorphism.

Question 4. Prove that if M3 is a closed, simply connected manifold, then there is a map g :

M3 → S3 that induces an isomorphism in homology groups in all dimensions. This is a weaker

statement of the Poincaré Conjecture, proved in 2003 by G. Perelman.

Proof. Define M̃ = {µx|x ∈M and µx is a local orientation of M at x}. The map µx 7→ x defines

a two-to-one surjection, and, due to everything being nice and manifold-y, we see that M̃ is a

two-sheeted covering space of M3.

Since M3 is simply connected, M̃ has either one or two components since it is a two-sheeted

covering space of M3. If it has two components, they are each mapped nomeomorphically to

M3 by the covering projection, so M3 is orientable, being homreomorphic to a component of

the orientable manifold M̃ . Thus M3 is orientable, and H0(M3) ∼= Z because simply connected

implies nonempty and path-connected. Now since M3 is a closed and orientable manifold, we can

use Poincaré duality. Also from Theorem 3.26 (part c), Hi(M
3) ∼= 0, i > 3. Because M3 is simply-

connected, π1(M3) ∼= 0 ∼= H1(M3). H1(M3) ∼= Hom(0,Z)⊕ Ext(Z,Z) ∼= 0. By Poincare duality,

H2(M3) ∼= H1(M3) ∼= 0. Also by Poincaré Duality, H3(M3) ∼= H0(M3) ∼= Hom(H0(M3),Z)⊕

Ext(0,Z) ∼= Z ⊕ 0 ∼= Z. To sum this up, we have H0(M3) ∼= H3(M3) ∼= Z, H1(M3) ∼= H2(M3) ∼=

0 ∼= Hi(M
3), i > 3. These are the exact homology groups of S3, so let g be the isomorphism

between their homology groups.

Question 5. Is (S2 × S4) ∨ S8 homotopy equivalent to a compact closed manifold? Explain.

Proof. Let ai ∈ Hi(S2;Z), bi ∈ Hi(S4;Z) be generators of their cohomology groups. From the

definition of the external cup product we have p∗1(a) ^ p∗2(b) ∈ H∗(X×Y ;R), for p1, p2 projection

maps. For H0(S2 × S4) ∼= Z because this is space and path-connected. Let p∗1, p∗2 be induced

homomorphisms from the projection S2×S4 → S2, S2×S4 → S4, respectively. We have p∗1(a1) ^

p∗2(b1) = 0 ^ 0 = p∗1(a1) ^ 0 = 0 ^ p∗2(b1) = 0 ∈ H1(S2 × S4;Z). We also have p∗1(a2) ^

7



p∗2(b2) = p∗1(a2) ^ p∗2(0) ∈ H2(S2 × S4;Z) as a generator for H2. The other nonzero generator

b4, when cupped with another generator ai, i 6= 2 is 0 ^ p∗2(b4) ∈ H4(S2 × S4;Z), which is the

generator of H4. For all other combinations when ai 6= a2, bj 6= 4 we have trivial Hi+j . With

0 6= p∗1(a2) ^ p∗2(b4) ∈ H6(S2×S4;Z), we conclude that Hi(S2×S4;Z) ∼= Z (has a single generator

infinite with Z coefficients) when i = 0, 2, 4, 6 and trivial otherwise. We might think we would run

into trouble with p∗1(a2) ^ p∗1(a2), but because this is the pullback of the generator H2(S2) under

p1, and in H2(S2), a2 ^ a2 = 0, this still holds in H2(S2 × S4). By the Kunneth Formula, we

have H∗(S2 × S4;R) ∼= Z[a2]/(a2
2)⊗R Z[a4]/(a2

4), |a2| = 2, |a4| = 4.

For H̃∗((S2 × S4) ∨ S8) (we need not worry about H0 since the space is nonempty and path-

connected), we use the fact from Hatcher that H̃∗((S2 × S4) ∨ S8) ∼= H̃∗(S2 × S4)⊕ H̃∗(S8). For

H̃∗(S8), we know that Hi
∼= Hi ∼= Z for i = 0, 8, and ∼= 0 if else. Thus our cohomology ring is

H̃∗(S8;Z) ∼= Z[b]/(b2), |b| = 8. Thus we have H̃∗((S2 × S4) ∨ S8) ∼= [Z[a2]/(a2
2) ⊗ Z[a4]/(a2

4)] ⊕

Z[b]/(b2), |a2| = 2, |a4| = 4, |b| = 8.

Any manifold homotopically equivalent to (S2×S4)∨S8 must be an 8-manifold. From Theorem

3.26 in Hatcher, if a manifold is not oriented, then H8(M ;Z) ∼= 0⇒ H8(M ;Z) ∼= 0, which cannot

be possible, as H8((S2×S4)∨S8) is nontrivial. Thus a manifold that is homotopy equivalent must

be oriented, since in that case H8(M ;Z) ∼= H8((S2 × S4) ∨ S8) ∼= Z. Oriented closed manifolds

satisfy Poincaré Duality. If a closed manifold were to be homotopy equivalent to (S2 × S4) ∨ S8,

since the latter is path-connected the former better be path-connected. Suppose that (S2×S4)∨S8

satisfies Poincaré Duality. Consider the fundamental homology class [M ] ∈ H8((S2×S4)∨S8) ∼= Z.

From Poincaré Duality, we know that, for α ∈ H2(M), where α is a generator, [M ] _ α generates

H6(M), since D(α) = [M ] _ α is an isomorphism.

Examining the cap product, we have

ψ(σ _ ϕ) = ψ(ϕ(σ|[v0, ..., vk])σ|[vk, ..., vk+l]) (19)

= ψ(σ|[v0, ..., vk])ψ(σ|[vk, ..., vk+l]) = (ϕ ^ ψ)(σ) (20)

Thus, ψ([M ] _ α) = (α ^ β)([M ]), where ψ ∈ H6(M) is the generator. Since [M ] _ α is

a generator, and ψ is a generator homomorphism, ψ([M ] _ α) is a generator for the ring we are

in (here we are using Z). Thus, for β ∈ H4((S2 × s4) ∨ S8) the generator, 1 = ψ([M ] _ α) =
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(α ^ ψ)([M ]) = (α ^ (α ^ β))([M ]) = 0([M ]) = 0, a contradiction. This is because α ^ α = 0

from the ring structure we derived earlier. Because of this, Poincare Duality is not satisfied, so any

orientable or otherwise closed manifold has a different ring structure and therefore is not homotopy

equivalent.

Question 6. Prove that the Poincaré Duality theorem implies that if F is a field and Mn is a

closed F−oriented manifold with its fundamental class [Mn] ∈ Hn(Mn;F ), then the pairing

Hk(Mn;F )×Hn−k(Mn;F )→ F (21)

φ× ψ 7→ 〈φ ∪ ψ, [Mn]〉 (22)

is nonsingular for every k = 0, ..., n.

Proof. For F a field,Mn a closed F−oriented manifold with fundamental class [Mn] ∈ Hn(Mn;F ),

the pairing

Hk(Mn;F )×Hn−k(Mn;F )→ F (23)

φ× ψ 7→ (φ ^ ψ)([Mn]) (24)

is nonsingular if Hk(Mn;F ) ∼= Hom(Hn−k(Mn;F ), F ) and Hn−k(Mn;F ) ∼= Hom(Hk(Mn;F ), F ).

For the first isomorphism, we want to relate Hk(Mn;F ) with Hom(Hn−k(Mn;F ), F ). Using

Poincaré Duality, we have

Hn−k(Mn;F ) Hk(Mn;F )

Hom(Hn−k(Mn;F ), F ) ∼= Hom(Hk(Mn;F ), F )

∼=

Hom(Hn−k(Mn;F ), F ) ∼= Hom(Hk(Mn;F ), F ) via the hom-dual of Poincaré Duality. We can

now relate Hk(Mn;F ) with Hom(Hk(Mn;F ), F ) through the Universal Coefficient Theorem. The

homology groups Hk(Mn;F ) are the homology groups of the chain complex of free F−modules

with basis the singular n−simplices in Mn. From the Universal Coefficient Theorem, we have the

exact sequence

0→ Ext(Hk−1(Mn;F ), F )→ Hk(Mn;F )→ Hom(Hk(Mn;F ), F )→ 0 (25)
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SinceMn is closed, we have thatHk−1(Mn;F ), F ) is finitely generated. Now we examine ExtHk−1(Mn;F ), F ).

We wish to define a free resolution of the free F−module that is Hk−1(Mn;F ), F ):

0 F1 F0 Hk−1(Mn;F ) 0

0 0 Hk−1(Mn;F ) Hk−1(Mn;F ) 0

Dualizing the last line, we have the exact sequence

0 Hk−1(Mn;F ) Hk−1(Mn;F ) 0
f1 f0

The definition of Ext is Ker(f1)/Im(f0) = Hk−1(Mn;F ), F )/Hk−1(Mn;F ), F ) = 0. Thus our

exact sequence from the Universal Coefficient Theorem becomes

0→ 0→ Hk(Mn;F )→ Hom(Hk(Mn;F ), F ))→ 0 (26)

Therefore, Hk(Mn;F ) ∼= Hom(Hk(Mn;F ), F ) ∼= Hom(Hn−k(Mn;F ), F ).

That F needs to be a field comes from the first isomorphism above. Denote the free F−module

Ck(Mn;F ) with basis the singular k−simplices in Mn. Suppose there are j k−simplices in Mn.

Then by the Structure Theorem for Principal Ideal Domains, Ck(Mn;F ) ∼= F j if F is a field. Thus

Hom(Ck(Mn;F ), F ) ∼= Hom(F j , F ) ∼= Hom(Ck(Mn), F ). Treating Hom(Ck(Mn;F ), F ) as a dual

complex, the homology groups are the cohomology groups Hk(Mn;F ).

We can get the second requirement Hn−k(Mn;F ) ∼= Hom(Hk(Mn;F ), F ) the same way, pro-

vided that we can take

Hn−k(Mn;F )×Hk(Mn;F )→ F (27)

ψ × φ 7→ (ψ ^ φ)([Mn]) = (φ ^ ψ)([Mn]) (28)

or, in terms, the cup product commutes. We check that this is true. For a singular n−simplex

σ : ∆n →Mn, we have

(φ ^ ψ)([Mn]) = φ(σ|[v0, ..., vk]) · ψ(σ|[vk, ..., vn]) (29)

= ψ(σ|[vk, ..., vn]) · φ(σ|[v0, ..., vk]) = (ψ ^ φ)([Mn]) (30)
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since the product in F given by · commutes in a field, and relabeling the vertices of our n−simplex.

Therefore Hn−k(Mn;F ) ∼= Hom(Hk(Mn;F ), F ), and the pairing given by (2) is nonsingular.

Question 7. Show that

H∗c (Rn;G) ∼= H̃∗(Sn;G) (31)

and more generally that if X is a topological space so that in its one-point compactification X ∪∞,

the point ∞ has a contractible neighborhood, then

H∗c (X;G) ∼= H̃∗(X ∪∞;G) (32)

where Hc is the cohomology with compact supports.

Proof. In computing H∗c (Rn;G), we compute the limit group lim−−→ Hi(Rn,Rn − K;G), for K

compact subsets K ⊂ Rn. We let each compact subset K be the ball Bk of integer radius k. This

is a compatible choice because the integers are a directed set, and any compact subset of Rn can

be contained in a ball of some integer radius. We then use the exact sequence that comes with

relative cohomology:

H0(Rn,Rn −Bk;G)→ H0(Rn;G)→ H0(Rn −Bk;G)→ (33)

H1(Rn,Rn −Bk;G)→ H1(Rn;G)→ H1(Rn −Bk;G)→ ... (34)

Hi(Rn,Rn −Bk;G)→ Hi(Rn;G)→ Hi(Rn −Bk;G)→ ... (35)

Since Rn is simply connected, H0(Rn;G) ∼= G, and Hi(Rn;G) ∼= 0, i > 0. Examining H0(Rn,Rn−

Bk;G), we see that this is given by Hom(C0(Rn)/C0(Rn − Bk), G). Since both Rn and Rn − Bk

are connected, this group is trivial. Therefore, our exact sequence becomes

0→ G→ H0(Rn −Bk;G)→ (36)

H1(Rn,Rn −Bk;G)→ 0→ H1(Rn −Bk;G)→ ... (37)

0→ Hi(Rn −Bk;G)→ Hi+1(Rn,Rn −Bk;G)→ 0→ ... (38)
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Notice that Rn −Bk is homotopically equivalent to Sn. Therefore we have

0 G Hom(C0(Sn), G) ... Hom(Ci(S
n), G) ...

0 H̃0(Sn;G) ... H̃i(Sn;G) ...

0 H0(Rn,Rn −Bk;G) ... Hi(Rn,Rn −Bk;G) ...

∼= ∼=

Therefore Hi(Rn,Rn − Bk;G) ∼= H̃i(Sn;G). Since Rn − Bk ' Sn ' Rn − Bk+1, we have that

Hi(Rn,Rn − Bk;G) ∼= Hi(Rn,Rn − Bk+1;G). Thus, lim−−→ Hi(Rn,Rn − Bk;G) ∼= Hi
c(Rn;G) ∼=

H̃i(Sn;G). Because of this homotopy equivalence, these cohomology groups must have isomorphic

ring structure, so H∗c (Rn;G) ∼= H̃∗(Sn;G).

More generally, for a topological space X such that the one-point compactification X ∪∞ has

a neighborhood of {∞} that is contractible, we examine the compactly supported cohomology of

X. Therefore, there exists a contractible open set U ⊂ X ∪∞ containing∞. The compact subsets

K ⊂ X form a directed set under inclusion, since the union of two compact sets is compact. We

have lim→Hi(X,X −K;G) = Hi
c(X;G). Let H be the complement of U in X ∪∞. Since U is

open, H is closed. Since H ⊂ X ∪ ∞, and X ∪ ∞ is compact, H is bounded. Therefore H is

compact. Due to excision, since ∞ ∈ U ⊂ X ∪∞ has closure in U , we have

Hi(X,X −H) ∼= Hi(X ∪∞, X −H ∪∞) = Hi(X ∪∞, U ∪∞) = Hi(X ∪∞, U) (39)

for all i. Since U is contractible, lim→Hi(X,X − K) = Hi(X,X − H). This is because U can

contract to a smaller open neighborhood, encompassing any larger compact subset of X ∪∞. We

now examine H∗(X ∪∞, U ;G). We have

0 C0(X ∪∞;G)/C0(U ;G) C1(X ∪∞;G)/C1(U ;G) Ci(X ∪∞;G)/Ci(U ;G)...

0 C0(X ∪∞;G)/Z C1(X ∪∞;G) Ci(X ∪∞;G)...

0 Z C0(X ∪∞;G) C1(X ∪∞;G) Ci(X ∪∞;G)...

0 H̃0(X ∪∞;G) H̃1(X ∪∞;G) H̃i(X ∪∞;G)...

∼= ∼=

...

∼=

...

...

...

since Ci(U ;G) ∼= Ci(∞;G), as U is homotopically equivalent to a point. Thus H∗(X ∪∞, U ;G) ∼=

H̃∗(X ∪ ∞;G). Since X has the same singular structure of X ∪ ∞ in 0 < dimensions, the ring
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structure is the same. Thus H∗c (X;G) ∼= H̃∗(X ∪∞;G).

Question 8. 1. A theorem of Hopf states that if X is a path connected space of the homotopy

type of a CW -complex, and it is endowed with a basepoint, then there is an isomorphism,

[X,S1]·
∼=−→ H1(X,Z) (40)

f → f∗(σ) (41)

where σ ∈ H1(S1;Z) ∼= Z is a generator, and [X,S1]· denotes the based homotopy classes

of basepoint preserving maps from X to S1. Let Mn be a closed, oriented, connected n-

dimensional manifold with basepoint x0 ∈ Mn. Suppose α ∈ H1(M ;Z). Let fα : M → S1

represent α via Hopf’s theorem. Let N = f−1
α (t) where t ∈ S1 is a regular value of fα. Show

that the homology class [N ] ∈ Hn−1(M) is Poincaré dual to α ∈ H1(M).

2. Prove, using Hopf’s theorem, the following theorem of Thom: If Mn is a closed, orientable

manifold, then any homology class in Hn−1(Mn) is represented by the fundamental class of

a smooth codimension one, closed, oriented submanifold.

Proof. 1. Treat t ∈ S1 as an embedded 0-dimensional submanifold. Since t is a regular value

of fα, N = f−1
α (t) is a submanifold of M of dimension n− 1 by the Regular Value Theorem

(for proof that any α can correspond to a smooth map, see part b)). Furthermore, f t t

since t is 0-dimensional; since t is a regular value, f is submersive at t, and thus has image

the entire tangent space TtS1. We then can invoke the previous problem:

[f−1
α (t)] = [N ] ∈ Hn−1(M ;Z) (42)

= f∗α(DS1([t])) ∩ [M ] (43)

We now examine f∗α(DS1([t])). From the above theorem, we have [t] ∈ H0(S1;Z) the funda-

mental class of t, up to a sign difference depending on our orientation. Therefore, we have

DS1([t]) ∈ H1(S1;Z) is a generator. Thus f∗α(DS1([t])) = α ∈ H1(M ;Z), up to a sign. There-

fore α ∩ [M ] = [N ], i.e. α is Poincaré Dual to [N ]. (This works out because every manifold

is a CW−complex, and M is closed, oriented, and connected and thus path-connected)
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2. We use the previous part for inspiration. Suppose we have a class β ∈ Hn−1(M). Take its

Poincaré Dual DM (β) ∈ H1(M). In the same way as in part a), let fβ be a smooth map

from M to S1. First we check that fβ is in the same homotopy class as a smooth map. From

the Whitney Embedding theorem, we call the smooth embedding g : S1 → R2. We want

g−1 ◦ g ◦ f : M → S1 to be homotopic to a smooth map, so g ◦ f : M → R2 has to be

homotopic to a smooth map. This is a standard fact in analysis: for ε > 0, there exists a

differentiable function h such that, when we divide up our map (g◦f) :=
∑n
i (g◦f)i : M → R,

we have |(g ◦ f)i − h| < ε; the graph of (g ◦ f)i is a continuous section of the trivial bundle

M × R. In any ε−neighborhood of (g ◦ f)i there is a differentiable section h. This is the

h we want. Since the ε−neighborhood is continuously mapped to (g ◦ f)i, h homotopic to

(g ◦ f)i. Thus (g ◦ f) (the whole map M → R2) maps to a tubular neighborhood of S1.

Since ηS1 can be smoothly deformed to S1 (call this map π), we have a differentiable map

π ◦ (g ◦ f) : M → S1 ⊂ R2 that is homotopic to f . From Corollary 8.5 in the notes, the

set of regular values of fβ is residual, so there exists a regular value t′ ∈ S1 of this map.

Through the Regular Value Theorem, we have f−1
β (t′) is a submanifold ofM . This is oriented

because, for U ⊂ S1 an open subset containing t ∈ S1, f−1
β (U) is an open subset of M and

therefore orientable via f−1
β . By similar reasoning, f−1

β (t) is closed. From the previous part,

DM ([f−1
β (t′)]) = DM (β) ∈ H1(M), i.e. [f−1

β (t′)] = β ∈ H1(M). Thus every homology class

in Hn−1(M) is represented by the fundamental class of a codimension 1, closed, orientable

submanifold.

1 Bundle Theory

All problems written by Prof. Ralph Cohen. Referenced to Cohen’s notes/textbook-in-progress,

“Bundles, Homotopy, and Manifolds.”

Question 9. Let ξ → B be an n-dimensional vector bundle.

1. Define clutching functions of the nk−dimensional k−fold tensor product bundle ⊗kξ → B in

terms of clutching functions of ξ.
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2. Define clutching functions of the k−fold exterior product bundle ∧kξ → B in terms of clutch-

ing functions of ξ.

Proof. 1. Let ξ → B be an n−dimensional vector bundle with clutching functions φα,β : Uα ∩

Uβ → GLn(R). We define clutching functions on the k−fold tensor bundle ⊗kξ → B by

taking the product of our clutching functions on ξ:

φ⊗
kξ

α,β : Uα ∩ Uβ GLn(R)× ...×GLn(R) GLnk(R)

x A× ...×A A⊗ ...⊗A

φα,β×...×φα,β ⊗

φα,β×...×φα,β ⊗

where A ∈ GLn(R) is the linear transformation on ξ is the image of the regular clutching

function on ξ. Here the tensor product of two linear transformations A1 : ξ → ξ, ..., Ak : ξ → ξ

is the induced linear transformation A1⊗ ...⊗Ak : ξ⊗ ...⊗ ξ → ξ⊗ ...⊗ ξ. This well-defined

because we simply take the automorphism associated to the clutching function on ξ and

tensor k copies of it; we get φβ,α = A−1⊗ ...⊗A−1, which, when applied before or after φα,β ,

we get Id⊗ ...⊗ Id. Thus φα,β = φ−1
β,α.

2. We approach this problem by considering the vector space associated with ⊗kξ, for ξ and

n−dimensional vector space. Consider an orthonormal basis {ei}0≤i≤n of ξ. We define an

isomorphism from ξ × ...× ξ to ξ ⊗ ...⊗ ξ:

ei1 × ...× eik 7→ ei1 ⊗ ...⊗ eik (44)

Thus we have nk generators of ⊗kξ, so ⊗kV is isomorphic to an nk−dimensional vector space.

Since ∧kξ a quotient of this vector space, this should probably be isomorphic to a subspace.

We construct a basis of ∧kξ. The symmetry quotient a⊗b+b⊗a implies that a⊗b = −b⊗a,

in particular a⊗a = −a⊗a, so a⊗a = 0, for a, b ∈ ξ. Thus there can be no repeated indices,

and permutations of index combinations are linearly dependent. Thus, the allowable basis

vectors are just the
(
n
k

)
combinations of k entries spanning 1 to n. Thus ∧kξ is isomorphic to

an
(
n
k

)
-dimensional vector space. If k > n, there must be repeated indices, and so the vector

space is 0-dimensional. Thus we need our clutching functions to have image in GL(nk)
(R)

from k elements in GLn(R). Antisymmetry, along with general objects one runs into with

dealing with exterior algebras, are determinants. Suppose [gij ] ∈ GLk(R) is the transition
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function associated with Ui∩Uj , and associate the k×k-submatrix of [gij ] denoted [gij ]h∈(nk)

(henceforth we will say that h ∈ S(
(
n
k

)
) is an increasing sequence of k integers between 1 and

n), with entries kept being the entries associated with the corresponding indices of the basis

vectors of ∧kξ. Define the element in GL(nk)
(R) as the matrix

([gij ]h∈S((nk)))m,l∈(nk)
(45)

Example 1.


a b c

d e f

g h i

 7→



a b

d e


a c

d f


b b

e f

a b

g h


a c

g i


b c

h i

d e

g h


d f

g i


e f

h i





(46)

where the submatrix entries are determined by ranging across the elements of the
(
n
k

)
permu-

tations.

This is clearly an injection, as scaling any entry in the preimage scales a unique combination

of entries in the image. Thus, by changing one entry in the image, one cannot counteract this

change by changing another entry. Furthermore, Idn trivially maps to Id(nk)
, since all off-

diagonal elements have the determinants of matrices with only one nonzero element, and the

diagonal elements have determinants of identity matrices. Thus the image is in a subgroup

of GL(nk)
(R), and this map has a well-defined inverse. To check that this is a well-defined

clutching function, we consider the clutching function associated with [g−1
ij ]. We have

A−1
ij =

n!εi1...ibεj1...jbA
j1
i1
...Ajbib

k!εii2...ibεjj2...jbA
j2
i2
...Ajbib

, for b :=
n!

k!
(47)

=
nεi1...ibεj1...jb [[gij ]h1

]...[[gij ]hb ]

εii2...ibεjj2...jb [[gij ]h2
]...[[gij ]hb ]

, hα ∈ S(

(
n

k

)
). (48)
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where hα is the corresponding permutation with the iα, jα entry in our matrix.

(gij)
−1 =

nεi1...inεj1...jngi1j1 ...ginjn
εii2...inεjj2...jngi2j2 ...ginjn

(49)

((g−1
ij ))h∈S((nk)))m,l∈(nk)

=
nεi1...ibεj1...jbε

s1...tkεs1...tkgs1t1 ...gsktkε
i′′1 ...i

′′
k εj′′1 ...j′′k gi′′1 j′′1 ...gi′′k j′′k

εii2...ibεjj2...jbε
i′1...i

′
kεj′1...j′kgi′1j′1 ...gi′kj′kε

i′′1 ...i
′′
k εj′′1 ...j′′k gi′′1 j′′1 ...gi′′k j′′k

(50)

=
nεi1...ibεj1...jb [[gij ]h1

]...[[gij ]hb ]

εii2...ibεjj2...jb [[gij ]h2
]...[[gij ]hb ]

, hα ∈ S(

(
n

k

)
) (51)

where in the last step we rewrite our scare labels for elements of S(
(
n
k

)
), and we find this

is exactly equal to A−1
ij . Thus A−1

ij is the image of g−1
ij , and so our clutching functions are

well-defined.

Question 10. 1. Notice that the tensor product of two one-dimensional vector bundles (“line

bundles” ) over a space B is still a one dimensional vector bundle . Show that the set of

isomorphism classes of one-dimensional (real) vector bundles over B is an abelian monoid

with respect to tensor product. In particular, what is the unit of this monoid?

2. Show that in fact this abelian monoid is an abelian group.

Proof. 1. First we note that the clutching functions of a vector bundle uniquely determine the

isomorphism class of said bundle. In the spirit of the first problem, we define our clutching

functions for the k−fold tensor product of line bundles by multiplying the clutching functions

of a single line bundle:

φ⊗
kR

α,β : Uα ∩ Uβ
φα,β×...×φα,β−−−−−−−−−→R∗ × ...× R∗

∼=−→ R (52)

→ R⊗ ...⊗ R (53)

where that last isomorphism is due to having the basis vector, comprised of the ei basis vector

for the ith tensor factor, as e1⊗ ...⊗ e∗k. This is an associative operation, as sα,β(s̃α,βs
′
α,β)→

(e1 ⊗ e2) ⊗ e3
∼= e1 ⊗ (e2 ⊗ e3) ← (sα,β s̃α,β)s′α,β . This map is abelian, since we can simply

map ei × ej → ej ⊗ ei, as an isomorphism, and as ei × ej → ei ⊗ ej is an isomorphism,

⊗R′ ∼= R′ ⊗R. Thus these are the same isomorphism class. It remains to show that there is
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an identity element. From the properties of the tensor product, e1⊗e2 = e1e2⊗1 = 1⊗e1e2.

Furthermore, sα,βsβ,α = 1. Thus we have a natural isomorphism from principal bundles

(B×{1} = B) R→ R⊗R given by e1 → e1⊗1 ∼= 1⊗e1. Using the inverse map (that map was

an isomorphism) Thus the identity element is given by 1 ∈ R∗. Since we have associativity,

commutativity, and an identity element, the isomorphism classes of 1-dimensional vector

bundles forms an abelian monoid.

2. It remains to prove that every element has a unique inverse, as an abelian group is an abelian

monoid where every element has a unique inverse. Consider the map

φ⊗
2R

α,α :Uα ∩ Uβ
φα,β×φβ,α−−−−−−−→ R∗ × R∗ ⊗−→ R⊗ R

∼=−→ R (54)

x→ a× a−1 → a⊗ a−1 b−→ aa−1 ⊗ 1→ 1⊗ 1
c−→ 1 (55)

where the b map is due to the linearity of the tensor product and the c map is due to the

natural isomorphism defined above. Since φβ,α is the unique inverse clutching function to

φα,β , each element in this monoid has a unique inverse, and thus the isomorphism classes of

1-dimensional vector bundles is an abelian group with the tensor product operation.

Question 11. Let X be a space with a basepoint x0 ∈ X. Recall that the (reduced) suspension of

X, ΣX, is the space

ΣX = X × S1/{X × {1} ∪ x0 × S1} (56)

Here I am thinking of S1 as the unit complex numbers. Let (Y, y0) be another space with basepoint.

Consider the (based) “loop space”

ΩY = Map((S1, {1}), (Y, y0)) (57)

This is the space of maps from S1 to Y that take 1 ∈ S1 to the basepoint y0 ∈ Y , endowed with

the compact - open topology.
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1. Prove that there is a bijection

[ΣX,Y ] ∼= [X,ΩY ] (58)

Here the notation [−, −] denotes the set of homotopy classes of basepoint preserving maps.

As a special case, conclude that πn(Y, y0) ∼= πn−1(ΩY, ε0), where ε0 : S1 → Y is the constant

map at the basepoint y0.

2. Let G be a topological group, and consider the map f : G → ΩBG defined in the proof of

Corollary 4.10 in the text. Prove that f induces an isomorphism in homotopy groups (in all

degrees). Such a map is called a “weak homotopy equivalence”.

Proof. 1. We being by considering elements of [X,ΩY ]. Define a basepoint-preserving map

f ∈ [X,ΩY ] for some x ∈ X by f(x). This is thus a basepoint-preserving map from (S1, {1})

to (Y, y0), denoted f(x)(t). Since f(x)(t) is basepoint-preserving, f(x)(1) = y0. Furthermore,

since f is basepoint-preserving, f(x0)(t) = y0. We now examine elements of [ΣX,Y ]. Suppose

we have a basepoint-preserving map g ∈ [ΣX,Y ]. If we consider (x, t) ∈ X × S1/{X ×{1} ∪

x0 × S1}, we have that (x, 1) = (x0, t),∀x ∈ X, t ∈ S1. Thus we have g(x, 1) = g(x0, t) = y0.

We have our correspondence as [g(x, t)] 7→ [f(x)(t)], given by the corresponding that, for

g : ΣX → Y , we associate the family of loops f(x)(t) by restricting g to the images of the

loops {x} × S1 ⊂ ΣX. We first prove surjectivity. Given a map j : (S1, {1}) → (Y, y0), we

have the preimage of this map in [X,ΩY ] to be the x ∈ X such that g(x, t) ⊂ Y is of the same

homotopy type in Y (we fix x and let t span S1 to get the same loop). Thus we associate

the homotopy type of g(x, t) with the homotopy type of [f(x)(t)], so the map is surjective.

Suppose [g1(x1, t1)] 6= [g2(x2, t2)]. Then we associate the maps [f1(x1)(t1)], [f2(x2)(t2)] ∈

[X,ΩY ], respectively. Since x1 6= x2, [g1] 6= [g2], the maps f1(x1) : S1 → Y, f2(x2) : S1 → Y

are not homotopically equivalent, and thus the loops are not homotopically equivalent. Thus

[f1(x1)(t1)] 6= [f2(x2)(t2)]. We check that this works for the basepoint map: [g(x0, t)] 7→

[f(x0)(t)] = [the constant map].

Notice that πn(Y, y0) = [Sn, Y ], so it suffices to prove that ΣSn−1 = Sn. We do this using
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CW−complexes:

[e0 t en/ ∼]× [e0 t e1]/ ∼
[e0 t en/ ∼]× e0 ∪ [e0 t e1/ ∼]× e0

=
(e0 t e0)× (e0 × e1)× (e0 × e1)× (e1 × en)/ ∼

[e0 × e0] ∪ [e0 × e1] ∪ [e0 × en]/ ∼

(59)

= e0 t (en × e1)/ ∼ (60)

= Sn+1 (61)

where we quotient out the usual way, i.e. the terms in the quotient “cancel” the equal terms

in the space and become a single point e0. Thus we have

πn−1(ΩY, ε0) ∼= [Sn−1,ΩY ] ∼= [ΣSn−1, Y ] ∼= [Sn, Y ] ∼= πn(Y, y0) (62)

2. First we prove injectivity. Since f(g)(t) = f(g, t), we notice the basepoint-preserving-ness

of f . For basepoint g0 ∈ G, we have f(g0)(t) = f(g0, t) = f(g0, t
′), for any t′ ∈ S1, equal

to the constant map. Consider a class of a nullhomotopic loop in πn(G). We have f(g0)(t)

is the constant map, mapping the point g0 to ε0, the constant map S1 → BG. This is

because (g0, t) = g0, so g0 gets mapped to {1} ∈ S1 which gets constantly mapped to the

basepoint of BG, as it is constant for all t ∈ S1. Thus the identity of πn(G) maps to the

identity of πn(ΩBG). Now we prove surjectivity. Suppose we have a homotopy class of an

n−dimensional loop [n] ∈ πn(ΩBG). This corresponds to an (n+ 1)−dimensional homotopy

class of BG through the isomorphism proved above. We seek to create a principal G-bundle

over ΣG that is trivial on both cones. Define this bundle as

C+ := G× [1,−1]/ ∼, c− := G× [−1, 1] (63)

E := C+ ×G ∪Id C− ×G (64)
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By theorem 4.8 in the text, there is a bijective correspondence given by

ψ : [ΣG,BG]→ PrinG(ΣG) (65)

f 7→ f∗(E) (66)

such that f∗(EG) = E. Thus let [g] ∈ πn+1(ΣG) be the homotopy class of an (n+ 1)−loop

that maps its loop in ΣG to said (n + 1)−loop in BG induced by f , well-defined because f

is a bijection. Thus let g be the f(g)(t). We know this must exist due to part a). Therefore,

f is an isomorphism in πn. Since this did not depend on n, all such homotopy groups are

isomorphic.

Question 12. For any space X let V ectd(X) denote the set of isomorphism classes of d−dimensional

vector bundles over X.

1. Compute V ectd(S1). Justify your answer.

2. Compute the fundamental group of the Grassmannian, π1(Grd(R∞).

3. Let X be a simply-connected space. Prove that any one-dimensional vector bundle over X is

trivial.

Proof.

Lemma 2. There is a bijective correspondence between principal bundles and homotopy groups

PrinG(Sn) ∼= πn−1(G) where as a set πn−1(G) = [Sn−1, x0;G, {1}], which refers to (based) homo-

topy classes of basepoint preserving maps from the sphere Sn−1 with basepoint x0 ∈ Sn−1, to the

group G with basepoint the identity 1∈ G.

Proof. Let p : E → Sn be a principal G−bundle. Write Sn as the union of its upper and lower

hemispheres

Sn = Dn
+∪Sn−1Dn−

(67)
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Since Dn
± are contractible, the restiction of E to each of the hemispheres is trivial, so if we fix

a trivialization of the fiber of E above x0 ∈ Sn−1 ⊂ Sn, we can extend this trivialization to the

upper and lower hemispheres. For θ a clutching function on the equator θ : Sn−1 → G, we can

then write

E = (Dn
+ ×G) ∪θ (Dn

− ×G) (68)

that is, for (x, g) ∈ (Dn
+ × G), we have (x, g) ∼ (x, θ(x)g) ∈ (Dn

− × G). Since our original

trivializations extended a common trivialization on the basepoint x0 ∈ Sn−1, then the trivialization

θ : Sn−1 → Gmaps the basepoint x0 to the identity 1 ∈ G. The assignment of a bundle its clutching

function, will define our correspondence

Θ : PrinG(Sn)→ πn−1(G) (69)

To see that this correspondence is well defined we need to check that if E1 is isomorphic to E2,

then the corresponding clutching functions θ1 and θ2 are homotopic. Let Ψ : E1 → E2 be an

isomorphism. We may assume this isomorphism respects the given trivializations of these fibers

of these bundles over the basepoint x0 ∈ Sn−1 ⊂ Sn. Then the isomorphism Ψ determines an

isomorphism

(Dn
+ ×G) ∪θ1 (Dn

− ×G)
Ψ−→ (Dn

+ ×G) ∪θ2 (Dn
− ×G) (70)

By restricting to the upper and lower hemispheres, Ψ defines maps

Ψ+ : Dn
+ → G (71)

Ψ− : Dn
− → G (72)

which both map x0 ∈ Sn−1 to the identity 1 ∈ G, and have the property

Ψ+(x)θ1(x) = θ2(x)Ψ−(x) (73)
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or Ψ+(x)θ1(x)Ψ−(x)−1 = θ2(x) ∈ G. By considering the linear homotopy Ψ+(tx)θ1(tx)Ψ−(tx)−1

for t ∈ [0, 1], we can see that θ2(x) is homotopic to Ψ+(0)θ1(x)Ψ−(0)−1, for 0 the origin in Dn
±,

i.e. the north and south poles of the sphere. Since Ψ± are defined on connected spaces, their

images lie on a connected component of G. Since their image on the basepoint x0 ∈ Sn−1 are both

the identity, there exist paths α+(t) and α−(t) in Sn that start when t = 0 at Ψ+(0) and Ψ−(0)

respectively, and both end at t = 1 at the identity 1 ∈ G. Then the homotopy α+(t)θ1(x)α−(t)−1

is a homotopy from the map Ψ + (0)θ1(x)Ψ−(0)−1 to the map θ1(x). Since the first of these maps

is homotopic to θ2(x), we have that θ1 is homotopic to θ2, as claimed. This implies that the map

θ : PrinG(Sn)→ πn−1(G) is well defined.

The fact that Θ is surjective comes from the fact that every map Sn−1 → G can be viewed as

the clutching function of the bundle

E = (Dn
+ ×G) ∪θ (Dn

− ×G) (74)

We discuss injectivity. Suppose E1 and E2 have homotopic clutching functions, θ1 ' θ2 : Sn−1 →

G. We need to show that E1 is isomorphic to E2, where

Ei = (Dn
+ ×G) ∪θi (Dn

− ×G) (75)

Let H : Sn−1 × [−1, 1]→ G be a homotopy so that H1 = θ1 and H1 = θ2. Identify the closure of

an open neighborhood N of the equator Sn−1 ⊂ Sn with Sn−1× [−1, 1]. Write D+ = D2
+ ∪N and

D− = D2
− ∪N . Then D+ and D− are topologically closed disks and hence contractible, with

D+ ∩ D− = N ∼= S1 × [−1, 1] (76)

Thus we may form the principal G−bundle

E = D+ ×G ∪H D+ ×G (77)

where, by abuse of notation, H is the composition N ∼= Sn−1 × [−1, 1]
H−→ G. If we deformation

retract N to Sn−1 and contract D2
± to D−, we get that E is isomorphic to E1 and E2.
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Lemma 3. There are bijective correspondences

V ect1(X) ∼= PrinU(1)(X) ∼= [X,BU(1)] = [X,CP∞] ∼= [X,K(Z, 2)] ∼= H2(X;Z) (78)

Similarly, there are bijective correspondences

V ect1R(X) ∼= PrinO(1)(X) ∼= [X,BO(1)] = [X,RP∞] ∼= [X,K(Z2, 1)] ∼= H1(X;Z2) (79)

Proof. The last correspondence takes a map f : X → CP∞ to the class

c1 = f∗(c) ∈ H2(X;Z) (80)

where c ∈ H2(CP∞) is the generator. In the composition of these correspondences, the class

c1 ∈ H2(X) corresponding to a line bundle ζ ∈ V ect1(X) is called the first Chern class of ζ (or

of the corresponding principal U(1)−bundle). These other correspondences follow directly from

the above considerations, once we recall that V ect1(X) ∼= PrinGL(1,C)(X)C[X,BGL(1,C)], and

that CP∞ is a model for BGL(1,C) as well as BU(1). This is because we can express CP∞ in its

homogeneous form as CP∞ = limn→∞(Cn+1 − {0})/GL(1,C), and that limn→∞(Cn+1 − {0}) is

an aspherical space with a free action of GL(1,C) = C∗.

For the other case, we have the last correspondence taking a map f : X → RP∞ to the class

ω1 = f∗(ω) ∈ H1(X;Z2, where ω ∈ H1(RP∞;Z2) is the generator. In the composition of these

correspondences, the class ω1 ∈ H1(X;Z2) corresponding to a line bundle ζ ∈ V ect1R(X) is called

the first Stiefel-Whitney class of ζ (or of the corresponding principal O(1)− bundle).

1. Let Vd(Rn) be the Stiefel manifold as in the text. We claim that the inclusion of Rn into

R2n to the first n coordinates induces a nullhomotopic inclusion of Vd(Rn) into Vd(R2n). Let

ι : Rn → R2n be a linear embedding with image the last n coordinates in R2n. For any

ρ ∈ Vd(Rn) ⊂ Vd(R2n), we have a homotopy tι+ (1− t)ρ that defines a one-parameter family

of linear embeddings of Rn into R2n, and hence a contraction of the image in Vd(Rn) onto

the element ι. Hence the limiting space Vd(R∞) is aspherical with a free GL(d,R)−action.
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Therefore the projection

Vd(R∞)→ Vd(R∞)/GL(d,R) = Grd(R∞) (81)

is a universalGL(d,R)−bundle, so the infinite Grassmannian is the classifying spaceGrd(R∞) =

BGL(d,R), so we have a classification

V ectd(S1) ∼= PrinGL(d,R)(S
1) ∼= [S1, BGL(d,R)] ∼= [S1, Grd(R∞)] = π1(Grd(R∞)) (82)

Thus it remains to compute π1(Grd(R∞)). Let V Od (Rn) be the Stiefel manifold of orthonormal

d−frames in Rn. Let ι′ : Rn → R2n be a linear embedding with image an orthonormal frame

in the last n coordinates in R2n. For any ρ′ ∈ V Od (Rn) ⊂ V Od (R2n), we have a homotopy

tι′ + (1− t)ρ′ that defines a one-parameter family of linear embeddings of Rn into R2n, and

hence a contraction of the image in V Od (Rn) onto the element ι′. Hence the limiting space

V Od (R∞) is aspherical with a free O(d)−action. Therefore the projection

V Od (R∞)→ V Od (R∞)/O(d) = Grd(R∞) (83)

is a universal O(d)−bundle, so the infinite Grassmannian is the classifying space Grd(R∞) =

BO(d). Thus we have

π1(Grd(R∞)) ∼= π1(BO(d)) ∼= [S1, BO(d)] ∼= PrinO(d)(S
1)

x−→ π0(O(n)) (84)

where the last x map is a bijection due to Lemma 1. O(d) has two connected components:

the map is a polynomial and thus continuous. This maps O(d) to either 1 or -1. Therefore,

since π0(O(d)) is the set of connected components O(d), it is a two-element group, and is

thus Z/2Z. Thus V ectd(S1) ∼= π1(Grd(R∞)) ∼= Z/2Z.

2. See part a).
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3. From Theorem 4.14, we have

V ect1(X) ∼= PrinO(1)(X) ∼= [X,BO(1)] = [X,RP∞] ∼= [X,K(Z2, 1)] ∼= H1(X;Z2) (85)

Since X is simply connected, H1(X;Z2) = 0, and so there is only one element in V ect1(X),

i.e. there is only one isomorphism class of 1-dimensional vector bundles, which must be the

trivial bundle.

Question 13. Let T 2 be a closed, connected, orientable surface (two-dimensional manifold). Show

that there are infinitely many nonisomorphic complex line bundles over T 2.

Proof. From Theorem 4.13 in the book, we have

V ect1(T ) ∼= PrinU(1)(T ) ∼= [T,BU(1)] = [T,CP∞] = [T,K(Z, 2)] ∼= H2(T,Z) (86)

Since T is closed and orientable, we can apply Poincaré Duality. Due to Poincaré Duality, we

have H2(T,Z) ∼= H0(T ). Since T is connected, we want to show that T is path-connected because

it’s a manifold. Let x ∈ T be any point in T . Let U denote the open neighborhood of x with

is locally path-connected. This is assured because there exists an open neighborhood of x that is

homeomorphic to R2, which is everywhere path-connected. Let y ∈ T\U . There exists an open

neighborhood of y that is path-connected by the same argument. Thus U, T\U are open, and

U ∪ T\U = T . Since U is nonempty, T must be path-connected, and the boundary of any image

of a singular chain is homotopic to the boundary of a point (since every point can be homotoped

to any other point), and is thus zero. Thus we have

C1
∂−→ C0

∂−→ 0⇒ (87)

H0(T ) =
C0

Im(∂1)
(88)

ε : C0 → Z (89)

ε(
∑
i

niσi) 7→
∑
i

ni (90)
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This is obviously a surjective map since T is nonempty. We want to show that Ker(ε) = Im(∂).

For a 1-simplex σ : ∆1 → X, we have ε(∂1(σ)) = ε(σ|[v1]− σ|[v0]) = 1− 1 = 0, so Im(∂) ⊂Ker(ε).

Now suppose ε(
∑
i niσ1) = 0. The σi’s are singular 0-simplices i.e. points of T . Choose a path

ft : [0, 1] → T from a basepoint x0 to σi(v0), with σ0 the singular 0-simplex with image x0. ft

is a singular 1-simplex, and ∂ft = σi − σ0. Thus ∂(
∑
i nift) =

∑
niσi −

∑
i niσ0 =

∑
i niσi − 0.

Therefore
∑
i niσi is a boundary. Thus Im(∂) ⊂Ker(ε), so Ker(ε) = Im(∂), and thus H0(T ) ∼= Z.

This has infinitely many elements, so H2(T,Z) ∼= Z has infinitely many elements, so V ect1(T ) has

infinitely many elements i.e. isomorphism classes of complex line bundles.

Question 14. A vector bundle η is said to be stably trivial if for some k ∈ Z, the Whitney sum

η ⊕ εk is a trivial vector bundle, where εk denotes the standard trivial bundle of dimension k. Let

M be an n−dimensional smooth, closed manifold, and suppose that there exists an immersion

f : M × Rk → Rn+k (91)

1. Prove that the tangent bundle TM is stably trivial.

2. Show that the sphere Sn has stably trivial tangent bundle for every n. (A manifold with stably

trivial tangent bundle is called “stably parallelizable”.)

3. Show that the tangent bundle TS2 → S2 is not trivial, but TS2 ⊕ ε1 is trivial.

Proof. 1. Since we have an immersion

f : M × Rk → Rn+k (92)

we have a monomorphism

T (M × Rk) TRn+k ζ ξ

M × Rk Rn+k X Y

M

Df γ

f

π

γ

so that γx : ζx → ξγ(x) is a monomorphism of fibers. Since M is n−dimensional, since γx is

injective, it must be an isomorphism as well. Thus we have an isomorphism of vector bundles
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T (M × Rk) ∼= f∗(TRn+k). We have isomorphisms

T (M × Rk) ∼= π∗(TM)⊕ εk, TRn+k ∼= εn+k (93)

(v, e) 7→ v ⊕ e, (w) 7→ w (94)

Thus we have an isomorphism π∗(TM) ⊗ εk ∼= εn+k of vector bundles over M × Rk. The

pullback of this along a section of π yields TM ⊕ εk ∼= εn+k.

2. We consider the standard embedding f : Sn → Rn+1, f(x1, ..., xn+1) = (x1, ..., xn+1). This is

obviously an embedding and thus an immersion. The unit normal vector in this embedding

is x
|x| with respect to the usual euclidean metric. This is nowhere-vanishing on Sn, so the

normal bundle is given by t x
|x| , t ∈ R. We have the isomorphism from the trivial line bundle

ε1 to the normal bundle by v 7→ v x
|x| . Thus we have TS

n⊕ν(Sn) ∼= TSn⊕ε1 = Rn+1 ∼= εn+1.

Thus TSn is a stably trivial bundle for all n.

3. From part b) we know that TS2⊕ ε1 ∼= ε2+1, so TS2⊕ ε1 is trivial, so it remains to show that

TS2 → S2 is not trivial. If TS2 was nontrivial, there would exist nowhere vanishing sections

on S2, i.e. a nowhere-vanishing vector field on S2. However, by the Hairy Ball Theorem,

such a vector field cannot exist on S2. Therefore there is no global section on S2, and TS2

is nontrivial.

Question 15. Let Mn be a smooth, closed, oriented manifold of dimension n. Consider the

diagonal embedding,

∆M : M ↪→M ×M (95)

x→ (x, x) (96)

Let ν∆M
be the normal bundle of this embedding.

1. Show that there is an isomorphism of vector bundles over M ,

ν∆M
∼= TM (97)
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where TM is the tangent bundle of M .

2. Let τ : M ×M → T (ν∆M
) be the Thom collapse map. Here T (ν∆M

) is the Thom space of

the normal bundle. Consider the composition map in homology,

φ : Hp(M
n;Z)×Hq(M

n;Z)
x−→ Hp+q(M ×M ;Z) ∗−→ Hp+q(T (ν∆M

);Z)
∩u−−→ Hp+q−n(Mn;Z).

(98)

The first map in this sequence is the cross product, and the last map in this sequence is

the Thom isomorphism in homology, given by capping with the Thom class. Show that this

composition map φ is equal, up to sign, to the intersection product:

φ(α, β) = ±α · β. (99)

Proof. 1. We have, for ∆(x) = (x, x), that T∆(x) ∼= {(x, x, v, v)|x ∈ M,v ∈ TxM}. We then

calculate the normal bundle ν∆M
: {(v1, v2) ∈ TM × TM |v · v1 + v · v2 = 0}. In examining

the orthogonality condition, we get that

v · v1 + v · v2 = 0⇒ (100)

v · v1 = −v · v2 (101)

v1 = −v2 (102)

Therefore the normal bundle is {(x, x, v,−v)|x ∈ M,v ∈ TxM}. This is isomorphic to TM

via the isomorphism

Ψ(x, x, v,−v) 7→ (x, v) (103)

Ψ−1(x, v) 7→ (x, x, v,−v) (104)

This is injective because, if (x, x, v,−v) 6= (x′, x′, v′,−v′) as a set, we get their image under

Ψ as (x, v) vs. (x′, v′), which are not equivalent. This is surjective because (x, v) ∈ TM has

preimage (x, x, v,−v), which is indeed in ν∆M
. This is well-defined, because the quotient
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relations hold under Ψ, as the normal bundle is subject to the same quotient relations as

that of TM , and scalar multiplication by -1 doesn’t affect anything.

2. For α ∈ Hp(M ;Z), β ∈ Hq(M ;Z), we have their cross product as ±[α × β] ∈ Hp+q(M ×

M ;Z). If we take the induced homomorphism in homology of the Thom collapse map of the

embedding MM ×M , we have that ±τ∗(α × β) ∈ Hp+q(T (ν∆M
);Z). We know from part

a) that ν∆M
∼= TM, so Hp+q(T (ν∆M

);Z) ∼= Hp+q(T (TM);Z), so the Thom isomorphism

can be applied from Hp+q(T (ν∆M
);Z) to Hp+q−n(∆(M);Z), since M is oriented. From the

reasoning in Theorem 9.4 in the notes, we have

[±τ∗(α× β) ∈ Hp+q(T (ν∆M
);Z) ∼= Hpq (T (TM);Z)] _ [u] ∈ Hn(T (TM);Z) (105)

= ±[α× β ∩∆(M)] ∈ Hp+q−n(∆(M);Z) ∼= Hp+q−n(M ;Z) (106)

Notice that the intersection of α× β with ∆(M) ⊂M ×M are the exact points when α and

β intersect: if (a, b) ∈ α× β is equal to (x, x) ∈ ∆(M) ⊂M ×M , then x = a ∈ α, x = b ∈ β.

Thus the class α× β ∩∆(M) ⊂ M ×M is equal to ±[α ∩ β] ∈ Hp+q−n(M ;Z), which is the

intersection product ±α · β.
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