Analytic Number Theory Problems
Alec Lau
All mistakes are to be emailed to aszlau@gmail.com. All problems written by Prof. Kannan

Soundararajan and Prof. Andrew Glanville’s “Multiplicative Number Theory” textbook, unless

otherwise marked.
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1 The Prime Number Theorem
1.1 Partial Summation
1.1.1 Different Forms of the Prime Number Theorem
Question 1. Given the conjecture
d(x) =Y Aln) ~z (1)

where

logp if n =p™ for p prime and m > 1

0 otherwise

and the conjecture




Use partial summation to prove that (1) and (3) are equivalent and both are equivalent to the

conjecture

):= ) log(p) =z + o(x)

p<z

(4)

Definition 1. Partial Summation: Given a sequence a,, € C and a function f : R — C, set

S(t) = > j<ian, it is easy to conclude that
B
> anf(n)=S(B)f(B) - Z S(m)(f(n+1) ~ f(n)

n=A-+1

and, if [ is continuously differentiable on [A, B], then

B
> anf(n) = SBIB) - ST - [ SOF O
A<n<B A
Proof. We start with (3). Notice that, if we choose
1 if n = p for p prime
apn, =
0 otherwise
and f(x) =logz, then
n<z
= (Z an log:cf/ Zan (logt)'d
n<lx n<t
£ 1
(S oga— [ ()
p<w p<t

=m(x)logx — /: W(t)%dt

vt
~ 2 logm—/ dt
log x 5 tlogt

Nx_/ logt

~x —li(z)

Thus 7(z) ~ implies 0(z) = x + o(x)

z
log x

(11)
(12)
(13)

(14)



Now we assume 6(z) = z + o(x). We can easily see that

:ZA(n):Zlogp Z I—Zlogp Zlogp—é (15)

n<x p<zx k<log T p<z
l
T+ o < Z log o8 L (16)
p<z ng

Let f(n) = %82 and let a, = logn if n is prime, and 0 otherwise. Then this sum, through partial

logn’

summatlon, glves us

log = log = /x log =
< < 1 = — — 2" _dt= 1
z+o(z) <(z) < O(z )log:c 82305 |, Q(t)t(logt)gdt z + o(x) (17)

Thus 6(z) = x + o(x) implies ¥(z) = x + o(x) ~ .
Now we assume 1(x) ~ x. As before,

) < Zlogp 7(x)log (18)

p<zx

1.1.2 Adding reciprocals

Note: my version of the paper has Z I’'m pretty sure the denominator should be n, as

n<lx N

this sum is just 1.

Question 2. Prove that for any integer N > 1,

N N
1 {t}
—=logN +1-— —=dt 19
n; n R /1 2 19)
Deduce that, for any real x > 1,
Zl—lo T+ +0(3) (20)
n<x n o ! z

where v is the Euler-Mascheroni constant

N

v = lim (Zi—logN):l—/loo{;}dt (21)

N —oo

Note that, for ¢t € R, [t] is the integral part of ¢, and {t} is the rest of t.

Proof. We use partial summation again. Let f(x) = % and a, = 1. Thus, by partial summation,



we have

Z;:[N]Jb+1og1+/]vtt12dt (22)
M+ [ - (23)

:1+/ t—th—/ %}dt (24)
:1+1ogN—1og1—/N{tt2}dt (25)
zlogN—l-l—/N{tl;}dt (26)

For any real x, we have, through partial summation,

Z% N /t—dt (27)

. 2 ’x{x} +log N — / : %dt (28)
zlogN+l—?+Aw?dt—/w?dt (29)
:10gN+7—%+ Noo{;}dt (30)

It remains to prove that %} and f N {ti} dt are in O( ). Starting with the former, we see that since

{z} < 1, we have that \%| <1 so {i—} € O(1). Similarly, we have

t *1
| {}dt</ o 2|dt</ it € O 1) (31)
N N
Thus we conclude
Zl =logz + +O(l) (32)
n<zx
O

1.1.3 logN!

Question 3. For an integer N > 1, show that

Mt}
1ogN!:NlongN+1+/ Tdt (33)
1



Using that [} ({t} — 1/2)dt = ({«}* — {z})/2, show that
N N 2
{t} 1 1/ {t} —{t}
— ZlogN — -
/1 ; dt 5 og 3/, e dt
Conclude that N! ~ Cv/N(N/e)N, where you can take as fact that

C:exp(l—;/w{t};{mdt)zm

1

Proof. From rules of logarithms, we have log N! = log(N(N — 1)...(2)(1)) = log N + log(N —

(34)

(35)

1)+

.. +1log2 + log 1. We use partial summation once again. Let a,, = 1, and f(z) = logz. From the

partial summation formula given by (6), we have
log Nl = Nlog N — 0 — /N(Z l)ﬂ
1 t
n<t
N
= NlogN — /
1
N
t—{t
:NlogN—/ t{ }dt
1

N N
:NlogN—/ dt+/ %dt
1 1

N
:NlogN—N+l+/ gdt
1

As for the next part, we notice (38):

/1N{i}dt=/N{t}_t+2dt
:/1N1({t}—)dt+/1N1dt

- {t} 1{t}? —{t}
sty [

2
:0+/ 1{t} {t}dt—i- logN
1 2 2

1 N 1{t}—{t}2
=_logN— [ -+ 1
5 log /1 5 2 dt

1
———dt+ = logN+§log1

Thus we have

logN!:NlogN—N+1+2

S _ 2 [eS) N 2
llong%/l {t}tQ{t}dtJr;/N %dt

1 LY -
710gN—§/1 et

:NlongN+1+2

1 1 [ {t} - {t}?
ZNlogN—N+§logN—|—logC+§/ {}tiz{}dt
N



Taking the exponent of both sides, we get

=16 g

Nn:NN.£;¢" CVelv (49)

Now we examine the integral in the exponent. First we split it up.

3 Ba- s [T acyy [T By [T B e <] [Cuigie- 5 [ g

(50)

It is easy to see that the limit as N approaches infinity the value of this integral converges to 0, so

N!NNN~eiN\/N.C¢é°:> (51)
N!'~ CVN(N/e)N (52)
O

Definition 2. The Riemann Zeta Function is given by
=1 1.,
E:;'II - (53)
n=1 p

1.1.4 The Riemann Zeta Function

Note: My copy of the problem has a later part. In another copy of the book, this part is labeled
as a problem which requires complex analysis, something I haven’t learned yet, so I'm skipping

that for now.

Question 4. Prove that for Re(s)>1,
= v,
o= [ Bray= s [T My (54)

Proof. We use partial summation again. We see that, for a, = 1, f(z) = :% we have ((s) =

s




1 anf(n), so, using the usual partial summation formula,

0o N
=D _anf(n) = lim > anf(n)
1 1

N
= Jim (N5 = 5z = [ )
N
= Jim [N) s~ 1)~ M) + 115+ [ ]

We write this final integral in a different way:

° 1
s/ [y —dy = lim s/ y— EJ}
1 y® N—oo J1  y®
N N
Y {y}
s/1 ysﬂdy s Sﬂdy

= lim [s / / {fi}l dy]

. 1 M {y)
:1\/151100[_3;(155 1|1 ) - . y5+1 y]

lim [— i L1 —s/l {y}dt]

N—oo 53—1(N“”—1 15—1) ystl

Since Re(s) > 1, we have Re(s) — 1 > 0, so, evaluating the limit, we get that this expression is

equivalent to

—S (0 _ 1) {y} i s {y}

s—1 1 strl s—1 1 y5+1

1.2 Chebyshev’s Elementary Estimates
1.2.1 lim%2

Question 5. Prove that

lim sup ¥(@) >1> lim infM

T—00 x T—>00 x

¥(@)

x

so that if limg, o exists, it must be equal to 1.

(65)



Note that logn =3, A(d), so
N
Stogn=3" 3 Aw) =S u(h) (67)
n<x n<x n=dk k=1
and, by Stirling’s Formula, we have
Zw(%) =zlogx —x + O(logx) (68)
k=1

Proof. We start with lim sup (m)

> 1. Suppose not. Then there exists ¢ > 0 such that, for all

x > xg for some xy > 2, %z) < (1 —€). Then we have

z/xo

Zw x/k) < Z (x/k)+ Z (x/k) (69)
k=1 k=1 z/zo<k
z/xo
zlogrz —xz+ O(logz) < (1 —¢€)x Z 1 Z (x/k) (70)
k=1 z/xo<k
zlogx —x+ O(logx) < (1 —€)x (logﬂc—logﬂco+7+0 Z Y(z/k) (71)
x/xo<k
exlogz + O(x Z P(x/k) < (zo)(z — ) (72)
x/ato<k

where 7y is the Euler-Mascheroni constant. Since the LHS is O(zlogr) and the RHS is O(x), this
cannot be true for all z > z¢. Thus lim,_,, sup (z) > 1.
We follow the same approach as with lim sup. We suppose by contradiction that there exists

€ > 0 such that, for all x > zg for some z¢ > 2, such that @ > (14 €). We then have

z/mg o)
(1+e)z Z + Z Y(x/k) <Y p(a/k) (73)
lz/zo| <k k=1
(1+e)x[log§+’y+0(%)] + Z Y(z/k) < zlogz — z + O(log ) (74)
0 L /o) <k

Z Y(z/k) < —elogx — 14+ (14+¢€)logzg — (1+€)y (75)
lz/zo] <k

Since 1 (z) is strictly nonnegative for all € Z*, this cannot be true for all z > xy. Thus

lim sup M > 1> lim inf

—00 €T r—00

v(@)



1.2.2 Proof of Bertrand’s postulate

Question 6. Given that

P(2x) — Y(x) +¥(2x/3) > zlog4 + O(log x)

Proof that there exists a prime between N and 2N for large N.

It is given to us that ¢ (x) < xlog4+O((logx)?). (To see this, just subtract 1)(2x) — () using

I

the approximation given in the previous problem). Therefore, we get that m(z) < (log4+0(1))

log x

Proof. First we rearrange terms and take the given bound, resulting in
P(2z) —P(z) > xlogd — ¥(2x/3) + O(log x) = (77)

1
P(2z) — P(x) > §$10g4 + O(log x) (78)
Notice that 1(z) =3>_ -, logpﬂggij. Then this inequality becomes
Y o log 2z Y lo 18 5 L loga+ Olog 2) (79)
— —x x
gp log p gp logp” = 3 g g

p<2z p<z

The LHS is less than or equal to

1
Z log 2z — Zlogm > §x10g4 + O(log x)

p<2z p<z

[7(2z) — 7(z)]logx + w(2x) log2 > %m log4 + O(log )

T log 2
2x) — > log4 — (2 1
7(2) ~n(z) > g0 logd = w(2a) o +O(1)
2z log 2 log 2
m(2x) — 7(x) > 3 logs 7w (2x) log s +0(1)

Thus we have that there exists a prime number between 2z and x if 7(2z) < 2£ for large x. As

we bounded 7 (z) < (log4 + o(1)) ;o7 < %, this is the case for large enough . O

1.2.3 Y, A

n
Question 7. It’s given that

ZM:ZIOﬂJrO(l):IOgWrO(l)

n<x p<z

Show that this would follow from the Prime Number Theorem. Why does the Prime Number

logp
p<z

Theorem not follow from this? What stronger information on > would yield the Prime



Number Theorem?

Proof. The first equality follows from the fact that 62 <1 for m > 1. The second equality follows

™

from partial summation:

1 1 r 1—logt
Z an ogn =m(x) 08T —O—/ 7r(t)720g dt
n T 1 t

1 T dt
d -
tlogt 1t

(PNT) ~ 1 — /
1
=1—log(logx) + logx

=logz+ O(1)

10
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