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1 Coordinate transformations
If

𝒯 ∶ 𝑀 → 𝑁
(𝜃, 𝜙) ↦ (𝑢, 𝑣)

is a mapping between two manifolds, then we can write the metric tensor of 𝑁 in
terms of the coordinates on 𝑀 the following way:

𝑔𝑎𝑏 = 𝐽(𝒯 )𝑇 𝑔𝜇𝜈𝐽(𝒯 )

=
(

𝜕𝑢
𝜕𝜃

𝜕𝑢
𝜕𝜙

𝜕𝑣
𝜕𝜃

𝜕𝑣
𝜕𝜙)

𝑇

𝑔𝜇𝜈 (

𝜕𝑢
𝜕𝜃

𝜕𝑢
𝜕𝜙

𝜕𝑣
𝜕𝜃

𝜕𝑣
𝜕𝜙)

This also gives metrics induced by embeddings.
The volume form transforms via

𝒯 ∗𝑑𝑢 ∧ 𝑑𝑣 = √det(𝐽 (𝒯 ))𝑑𝜃 ∧ 𝑑𝜙

Sometimes, with a pseudo-riemannian metric, we’ll stick a negative sign inside
the square root.

Through coordinate charts, these formulae make calculating the metric and
volume form doable.
Example 1. Suppose

𝑢 = 𝐸𝑓(𝜃) cos(𝜙)
𝑣 = 𝐸𝑓(𝜃) sin(𝜙)
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and the metric tensor on 𝑁 is 𝑑𝜇 ⊗𝑑𝜇 +𝑑𝜈 ⊗𝑑𝜈. Then this metric tensor in terms
of 𝜃, 𝜙 is

𝑔′ =
(

𝜕𝑢
𝜕𝜃

𝜕𝑢
𝜕𝜙

𝜕𝑣
𝜕𝜃

𝜕𝑣
𝜕𝜙)

𝑇

(
1 0
0 1) (

𝜕𝑢
𝜕𝜃

𝜕𝑢
𝜕𝜙

𝜕𝑣
𝜕𝜃

𝜕𝑣
𝜕𝜙)

= (
𝐸 𝜕𝑓

𝜕𝜃 cos(𝜙) 𝐸 𝜕𝑓
𝜕𝜃 sin(𝜙)

−𝐸𝑓 sin(𝜙) 𝐸𝑓 cos(𝜙)) (
1 0
0 1) (

𝐸 𝜕𝑓
𝜕𝜃 cos(𝜙) −𝐸 𝜕𝑓

𝜕𝜃 sin(𝜙)
𝐸𝑓 sin(𝜙) 𝐸𝑓 cos(𝜙) )

= 𝐸2(𝜕𝑓
𝜕𝜃

2
𝑑𝜃 ⊗ 𝑑𝜃 + 𝑓 2𝑑𝜙 ⊗ 𝑑𝜙)

How does the volume form transform? Well,

𝒯 ∗𝑑𝑢 ∧ 𝑑𝑣 = 𝐸2𝑓 𝜕𝑓
𝜕𝜃

Example 2. Consider the embedding 𝑆2
𝑟 → ℝ3 given by

(𝜃, 𝜙) ↦𝑥1 = 𝑟 cos 𝜃 sin𝜙
𝑥2 = 𝑟 sin 𝜃 sin𝜙
𝑥3 = 𝑟 cos 𝜃

Then we have

𝑔𝑖𝑛𝑑𝑢𝑐𝑒𝑑 = (
−𝑟 sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 0
𝑟 cos 𝜃 cos𝜙 𝑟 sin 𝜃 cos𝜙 −𝑟 sin𝜙) 𝐼𝑑

⎛
⎜
⎜
⎝

−𝑟 sin 𝜃 sin𝜙 𝑟 cos 𝜃 cos𝜙
𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

0 −𝑟 sin𝜙

⎞
⎟
⎟
⎠

= 𝑟2 sin𝜙𝑑𝜃 ⊗ 𝑑𝜃 + 𝑟2𝑑𝜙 ⊗ 𝑑𝜙

Example 3. We find the volume form on 𝑆𝑛. In stereographic projection coordi-
nates, we have

𝒯 ∶ℝ𝑛 → 𝑆𝑛\{0} (1)

(𝑥1, ..., 𝑥𝑛) ↦ ( 2𝑥1
1 − ∑𝑗 𝑥2

𝑗
, ..., 2𝑥𝑛

1 − ∑𝑗 𝑥2
𝑗

,
−1 + ∑𝑗 𝑥2

𝑗

1 + ∑𝑗 𝑥2
𝑗

) (2)
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Figure 1: How does this vector field change along this curve?

Thus, knowing the metric on ℝ𝑛, we have

𝑔 = 4(𝑑𝑥1 ⊗ 𝑑𝑥1 + ... + 𝑑𝑥𝑛 ⊗ 𝑑𝑥𝑛)
1 + ∑𝑗 𝑥2

𝑗
(3)

𝑑𝑉 = √det 𝑔𝑑𝑥1 ∧ ... ∧ 𝑑𝑥𝑛 = ( 2
1 + ∑𝑗 𝑥2

𝑗
)𝑛𝑑𝑥1 ∧ ... ∧ 𝑑𝑥𝑛 (4)

2 Connections for dummies
2.1 Motivation
Vector fields are cool. Vector fields just assign vectors to every point in the man-
ifold. In fact, general fields are cool - assigning some object to every point in the
manifold. It turns out that a vector field is just a section of a vector bundle (go fig-
ure). Why not generalize to fiber bundles instead? Then we can deal with cooler
stuff like tensor fields.

Suppose we want to find out how a vector field changes along a curve on our
base manifold. This has practical applications, and it’s just a nice thing to figure
out about your vector field (see 1). To find this out, we need to connect different
fibers, hence the name.

When talking about change along something, we’ll want our way of connecting
fibers to behave like a derivative, so we’ll need some behavior involving the chain
rule (Leibniz rule). Also to make sure that bad fields sneak up on us, we’ll want
to deal with smooth vector fields, i.e. smooth sections.

3



Curves are all well and good, but it’s easier to think in terms of sections again -
after all, a section can give a curve, and, who knows? Maybe we want to know how
it changes with respect to another vector field, not just restricted to a 1-dimensional
submanifold.

2.2 Affine connections
With affine connections, the fiber bundle we work with is the tangent bundle 𝑇 𝑀 .
Denote the space of smooth sections of 𝑇 𝑀 by Γ(𝑇 𝑀). An affine connection is
then a bilinear map

Γ(𝑇 𝑀) × Γ(𝑇 𝑀) → Γ(𝑇 𝑀)
𝑋 × 𝑌 ↦ ∇𝑋𝑌

such that, for all smooth functions 𝑓 ∈ 𝐶∞(𝑀, ℝ) and all sections 𝑋, 𝑌 ∈
Γ(𝑇 𝑀),

∇𝑓𝑋𝑌 = 𝑓∇𝑋𝑌 ,
∇𝑋(𝑓𝑌 ) = 𝑑𝑓(𝑋)𝑌 + 𝑓∇𝑋𝑌

The 𝑋 in the above definition represents the change that we’re applying to 𝑌 . 𝑌 is
the vector field whose changes in the 𝑋 directions are what we’d like to measure.
Thus if we want to *change the change (𝑋)* in 𝑌 , this change in 𝑋 better be
𝐶∞(𝑀, ℝ)−linear. Since we want the change of 𝑌 , we better have that argument
obey the Leibniz rule, in order to behave like a derivative (the change of 𝑓𝑌 needs
to take into account the change of 𝑓 and the change of 𝑌 in this way, just like in
normal calculus).

2.3 Connections on a vector bundle
Let 𝜋 ∶ 𝐸 → 𝑀 be a (smooth) vector bundle. A connection on 𝐸 is a ℝ−linear
map

∇ ∶ Γ(𝐸) → Γ(𝑇 ∗𝑀 ⊗ 𝐸)

such that, for any 𝜎 ∈ Γ(𝐸) and 𝑓 ∈ 𝐶∞(𝑀, ℝ),

∇(𝑓𝜎) = 𝑓∇𝜎 + 𝑑𝑓 ⊗ 𝜎
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This is because any connection ∇ must take in a smooth section, and gives out a
rule for how it must be “differentiated.” This rule, is a particular field on 𝑀 de-
pending on what “direction” we’re differentiating the input section in. The values
in that field take in a tangent vector 𝑣 ∈ 𝑇 𝑀 and spit out a vector in 𝐸, hence the
scary-looking tensor product in there.

In other words, got a vector field 𝐸? Input it into a connection ∇ and you’ll get
an output that takes a vector field input. Enter in a vector field 𝑋 to that output,
and you’ll see how 𝐸 changes along 𝑋. This is called the covariant derivative
along X.

2.4 Connections on a principal bundle
Let 𝜋 ∶ 𝑃 → 𝑀 be a (smooth) principal 𝐺−bundle. A principal G-connection
on 𝑃 is a differential 1-form on 𝑃 with values in 𝔤, with some nice properties. The
connection is an element

𝜔 ∈ Ω1(𝑃 , 𝔤) ≅ 𝐶∞(𝑃 , 𝑇 ∗𝑃 ⊗ 𝔤)

such that
𝑑
𝑑𝑡[𝑔 exp(𝑡𝑋)𝑔−1]𝑡=0(𝑔 ⋅ 𝜔) = 𝜔,

and if 𝜉 ∈ 𝔤 and 𝑋𝜉 is the vector field on 𝑃 associated to 𝜉 by differentiating the
𝐺 action on 𝑃 , then 𝜔(𝑋𝜉) = 𝜉.

That first line is similar to what we worked with in the connection on a vector
bundle. The second line just means that the connection (𝜔) must be 𝐺−equivariant
(it better be, since we’re talking about principal 𝐺−bundles here). The last note
just means that we should be able to recover elements of the lie algebra when
we want to “covariantly differentiate” a vector field based said element of the lie
algebra.
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