Differential Topology Problems Alec Lau

All uncredited problems written by Prof. Ralph Cohen.

Question 1. Let $\pi : \tilde{X} \to X$ be a covering space. Let Φ be a smooth structure on X. Prove that there is a smooth structure $\tilde{\Phi}$ on \tilde{X} so that $\pi : (\tilde{X}, \tilde{\Phi}) \to (X, \Phi)$ is an immersion.

Proof. First we have to show that $\tilde{X} \to X$ is a topological manifold. Since π is a local homeomorphism, \tilde{X} is locally Euclidean. Let p_1, p_2 be distinct points such that $\pi(p_1) = \pi(p_2) \in U \subset X$, for U an evenly covered open subset of X. Then the components of $\pi^{-1}(U)$ containing p_1, p_2 are, by definition of a covering space, disjoint open subsets of \tilde{X} . If $\pi(p_1) \neq \pi(p_2)$, since X is a manifold, there exist disjoint subsets that contain $\pi(p_1), \pi(p_2)$. These map under π^{-1} to disjoint open subsets of \tilde{X} . Thus \tilde{X} is Hausdorff. For second-countable-ness, we are inspired by Proposition 4.40 in Lee. We check first that each fiber of π is countable. For $x \in X$ and an arbitrary point $p \in \pi^{-1}(x)$. We consider a map β from $\pi_1(X, x)$ to $\pi^{-1}(x)$. Since the fundamental group of a topological manifold is countable, if we can show surjectivity of such a map, we're done. Choose a homotopy class $[f] \in \pi_1(X, x)$ of an arbitrary loop $f: [0,1] \to X$ with f(0) = f(1) = x. From the path-lifting property of covering spaces, there is a lift of f given by $\tilde{f}: [0,1] \to \tilde{X}$ starting at p_0 . The Monodromy Theorem for covering spaces shows that $\tilde{f}(1) \in \pi^{-1}(x)$ depends only on the path class of f. Thus set β such that $\beta[f] = \tilde{f}(1)$. Since the components of \tilde{X} are path-connected, for any point $p \in \pi^{-1}(x)$, there is a path \tilde{g} in \tilde{X} from p_0 to p, and then $f = \pi \circ \tilde{f}$ is a loop in X such that $p = \beta[f]$. The set of all evenly covered open subsets is an open cover of X, and thus has a countable subcover $\{U_i\}$. $\pi^{-1}(U_i)$ has one point in each fiber over U_i , so $\pi^{-1}(U_i)$ has countable components. All components of the form $\pi^{-1}(U_i)$ are thus countable and an open cover of \tilde{X} . Since the components are second-countable, \tilde{X} is second-countable. Thus \tilde{X} is a topological manifold.

For Φ a smooth structure on $X \xleftarrow{\pi} \tilde{X}$, we choose any point $x \in X$ such that there exist two neighborhood pairs $U_1, U_2, V_1, V_2 \subset X$ such that $x \in U_1 \cap U_2, x \in V_1 \cap V_2$ and $\pi^{-1}(U_1) \neq \pi^{-1}(U_2) \subset \tilde{X}$ and V_1, V_2 are the domains of charts ψ_1, ψ_2 , respectively, in Φ . Since π is continuous and maps U_1, U_2 homeomorphically, $\pi^{-1}(x) \in \pi^{-1}(U_1) \cap \pi^{-1}(U_2)$. Since $\psi_1, \psi_2 \in \Phi, \psi_1 \circ \psi_2^{-1}$ is smooth. Now we define a smooth structure $\tilde{\Phi}$ on \tilde{X} by composing the charts in Φ with π . To simplify notation, we call $\tilde{U}_i = \pi^{-1}(U_i \cap V_i), \phi_i = \psi_i|_{U_i \cap V_i} \ i = 1, 2$:

$$\tilde{\psi}_i: \tilde{X} \to \mathbb{R}^n \tag{1}$$

$$\tilde{\psi}_i(\tilde{U}_i) = \phi_i \circ \pi(\tilde{U}_i) \tag{2}$$

See Figure 1. $(\tilde{U}_i, \tilde{\psi}_i)$ are charts of \tilde{X} because $\tilde{U}_i, U_i \cap V_i$, and $V_1 \cap V_2$ are open, and the maps that

Figure 1: Charts on \tilde{X}

compose these charts are homeomorphisms: $\psi_i|_{V_1 \cap V_2}$ is still a homeomorphism. Now we need to check that the transition maps for these charts are smooth:

$$\tilde{\psi}_1 \circ \tilde{\psi}_2^{-1} = (\phi_1 \circ \pi) \circ (\phi_2 \circ \pi)^{-1}$$
(3)

$$= (\psi_1 \circ \pi) \circ \pi^{-1} \circ \phi_2 \tag{4}$$

On $V_1 \cap V_2$, we have $\pi|_{V_1 \cap V_2} \circ \pi^{-1}|_{V_1 \cap V_2} = Id|_{V_1 \cap V_2}$. The identity map is smooth, so our transition map is then $\psi_1 \circ \psi_2^{-1}$, which we know is smooth. By combining our maximal smooth atlas Φ with surjective π , we have thus created a smooth atlas $\tilde{\Phi}$ on \tilde{X} . It remains to show that this smooth atlas is maximal. There is no such chart $(\tilde{W}, \tilde{\phi})$ not contained in this atlas, because $\pi(\tilde{W})$ is an open subset of X, and thus has an open cover $\{U_{\alpha}, \psi_{\alpha}\}$ of charts in the maximal smooth atlas of X:

$$\tilde{\phi}(\tilde{W}) = \left(\bigcup_{\alpha} \psi_{\alpha}\right)|_{\left(\bigcup_{\alpha} U_{\alpha}\right) \cap \pi(\tilde{W})} \circ \pi(\tilde{W}) \tag{5}$$

Since $\tilde{\phi}$ can be written in this way, $(\tilde{W}, \tilde{\phi})$ is contained in this smooth atlas. Thus this smooth atlas is maximal, and $\pi(\tilde{X}, \tilde{\Phi}) \to (X, \Phi)$ is an immersion, as the charts with properly shrunken domains have exactly one chart in X.

Question 2. Consider the DeRham homomorphism

$$\int : \Omega^k(M) \to C^k(M; \mathbb{R})$$
(6)

for each k. Prove that \int is a map of cochain complexes. That is,

$$\int d\omega = \delta(\int \omega) \tag{7}$$

where $\delta: C^k(M; \mathbb{R}) \to C^{k+1}(M; \mathbb{R})$ is the singular coboundary operator.

Proof. We start inductively. We want to show that the following diagram commutes:

$$\begin{array}{ccc} \Omega^0(M) & \stackrel{f}{\longrightarrow} & C^0(M;\mathbb{R}) \\ & \downarrow^d & \qquad \qquad \downarrow^\delta \\ \Omega^1(M) & \stackrel{f}{\longrightarrow} & C^1(M;\mathbb{R}) \end{array}$$

We have that $f \in \Omega^0(M)$ is just a C^{∞} function on M to \mathbb{R} . Consider a singular chain element $\sigma : \Delta^0 \to M$ in $C_0(M)$. We have

$$\int_{\sigma} f = f(\sigma(\Delta^0)) \in \mathbb{R}$$
(8)

Thus $\int f$ is clearly an element of $\operatorname{Hom}(C_0(M), \mathbb{R}) = C^0(M; \mathbb{R})$. Now let σ denote the singular chain element $\sigma : [0, 1] \to M$. Now we take the boundary homomorphism δ of this element in the

following way:

$$\delta(\int f)(\sigma) = (\int f)(\partial\sigma) \tag{9}$$

$$= \left(\int f\right)(\sigma(1) - \sigma(0)) \tag{10}$$

$$= \left(\int f\right)(\sigma(1)) - \left(\int f\right)(\sigma(0)) \tag{11}$$

$$= f(\sigma(1)) - f(\sigma(0)) \tag{12}$$

Now we take our same $f \in \Omega^0(M)$ and take d of f to obtain $df = f'(t)dt \in \Omega^1(M)$. Taking the De Rham homomorphism of this 1-form gives us, for $\sigma \in C_1(M)$,

$$(\int df)(\sigma) = \int_{\sigma} df \xrightarrow{\text{Stokes' Theorem}} \int_{\partial \sigma} f = f(\sigma(1)) - f(\sigma(0)) \in \mathbb{R}$$
(13)

Now we proceed with the inductive step, which is to prove that this diagram commutes:

$$\Omega^{n}(M) \xrightarrow{\int} C^{n}(M;\mathbb{R})$$

$$\downarrow^{d} \qquad \qquad \qquad \downarrow^{\delta}$$

$$\Omega^{n+1}(M) \xrightarrow{\int} C^{n+1}(M;\mathbb{R})$$

We proceed in the exact way as before: for $\omega \in \Omega^n(M)$, we take $(\int \omega)(\sigma)$, for $\sigma : \Delta^n \to M$. $\delta(\int \omega)(\sigma) = (\int \omega) \partial \sigma \sum_i (-1)^i (\int f)(\sigma) | [v_0, ..., \hat{v}_i, ..., v_n] \in \mathbb{R}$. In the other direction of the diagram, we have $d\omega$, then $(\int d\omega)(\sigma)$. This is equal to $\int_{\sigma} d\omega = \int_{\partial \sigma} \omega$ through Stokes' Theorem. This is then equal to the same thing: $\sum_i (-1)^i (\int f)(\sigma) | [v_0, ..., \hat{v}_i, ..., v_n] \in \mathbb{R}$. Thus $\int d\omega = \delta \int \omega$.

Question 3. Suppose $P^p \to M^n$ and $Q^q \to M^n$ are smoothly embedded closed submanifolds of M^n , which we also assume is closed. Suppose further that the submanifolds intersect transversely: $P^p \pitchfork Q^q$. Let $\nu_P \to P$ be the normal bundle of P^p in M^n , and let $P^p \to \eta_P$ be a tubular neighborhood.

1. Show that the restriction of ν_P to $P^p \cap Q^q$,

$$(\nu_P)_{P^p \cap Q^q} \to P^p \cap Q^q \tag{14}$$

is isomorphic to the normal bundle of $P^p \cap Q^q$ in Q^q .

2. Show that the space of $\eta_P \cap Q^q$ is a tubular neighborhood of $P^p \cap Q^q$ in Q^q .

Proof. 1. Call our smooth embeddings $f : P^p \to M^n, g : Q^q \to M^n$. Since $P^p \pitchfork Q^q$, we have $Df_x(T_xP^p) \oplus Dg_x(T_xQ^q) = T_xM^n$, for all $x \in P^p \cap Q^q$. Thus we have the diagram

where the square in the middle is commutative. We examine the pullback bundle of ν_q by the inclusion $i: P^p \cap Q^q \to Q^q$. We have, for the diagram

We have $i^*\nu_q = \{(q, v_q) \in P^p \cap Q^q \times V_q | i(q) = \pi_{Q^q}(v_q)\}$. We have that $\nu_p|_{P^p \cap Q^q}$ consists of those very v_q , since the q points in $i^*\nu_q$ are also elements of $P^p \cap Q^q$. Thus we can associate every normal vector in $\nu_p|_{P^p \cap Q^q}$ with a vector in ν_q over $P^p \cap Q^q$.

2. There really is not much to do here. Since a tubular neighborhood is diffeomorphic to a neighborhood of the normal bundle, we need only consider a neighborhood of the normal bundle of P^p when restricted to P^p ∩ Q^q. Since η_p is (up to diffeomorphism) a neighborhood of a tubular neighborhood of P^p, we have that η_p ∩ Q^q consists of P^p ∩ Q^q and η_p|_{P^p∩Q^q}. Since this is ν_p restricted to P^p ∩ Q^q, we know from the previous problem that it is isomorphic to a neighborhood of the normal bundle of P^p ∩ Q^q in Q^q, i.e. a tubular neighborhood of P^p ∩ Q^q in Q^q.

Written by Wojciech Wieczorek.

Question 4. Let $\alpha_0 < \alpha_1 < ... < \alpha_n$ be (n + 1) distinct nonzero real numbers. Consider $g : \mathbb{R}^{n+1} \to \mathbb{R}$ given by

$$g(x_0, ..., x_n) = \alpha_0 x_0^2 + ... \alpha_n x_n^2$$
(15)

and let f be the restriction of g to the sphere S^n . Show that $f: S^n \to \mathbb{R}$ is Morse with 2(n+1)

non-degenerate critical points. Find all critical points of f and compute their index, i.e. the number of negative eigenvalues of the Hessian Hf(x).

Proof. Since f is restricted to S^n , we can, without loss of generality, substitute x_i^2 for $1 - x_0^2 - \dots - x_{i-1}^2 - x_{i+1}^2 - x_n^2$ in our equation for g:

$$f(x_0, \dots, x_n) \mapsto (\alpha_0 - \alpha_i)x_0^2 + \dots + (\alpha_n - \alpha_i)x_n^2 + \alpha_i, \tag{16}$$

where there is no term with x_i . We have thus condensed Df down to a map of n coordinates. Taking the derivative of f now, we get

$$Df = (2(\alpha_0 - \alpha_i)x_0, 2(\alpha_1 - \alpha_i)x_1, ..., 2(\alpha_n - \alpha_i)x_n),$$
(17)

Where the i^{th} index is eliminated. If we take $x_i = \pm 1$, all other x_k s must be zero to be in the sphere, so this makes Df the zero vector, making the points when $x_i = \pm 1$ both 2 critical points. Since we were doing this without loss of generality, we can repeat this for all n + 1 points. Since each $(n + 1) x_k$ can be 1 or -1, we have 2(n + 1) critical points.

We observe that the Hessian of f is the matrix where the $i^{th}j^{th}$ entry is $\frac{\partial^2 f}{\partial x_i \partial x_j}$. We notice that this is $\delta_{kj} 2(\alpha_j - \alpha_i)$, so the Hessian is a diagonal matrix with $2(\alpha_k - \alpha_i)$ as its diagonal entries, in order. Remember that all α are distinct. Since none of these are equal to zero, the determinant of the Hessian must be $\prod_{k=0,k\neq i}^{n} (\alpha_k - \alpha_i) \neq 0$. Because det(H(f)) is nonzero and independent of coordinates, all critical points are non-degenerate, so f is morse.

As we have shown before, the critical points are $(\pm 1, 0, ..., 0), (0, \pm 1, ...0), ..., (0, 0, ..., \pm 1)$ (where all indeces that are not ± 1 are zero). Since $\alpha_0 < \alpha_1 < ... < \alpha_n$, and the entries of the Hessian can then be $2(\alpha_0 - \alpha_i), 2(\alpha_1 - \alpha_i)$, etc., we can determine how many are negative entries. For the critical points $(0, ..., \pm 1, ..., 0)$, the number of indeces less than *i* have negative values, as $\alpha_i >$ than all of those indeces' α_s . The determinant of this Hessian is simply $2^{n-1}(\alpha_0 - \alpha_i)(\alpha_1 - \alpha_i)...(\alpha_n - \alpha_i)$, where all $(\alpha_k - \alpha_i), \forall k < i$ is negative. The eigenvalues of this Hessian are then all values such that each one of these terms summed with the corresponding eigenvalue is 0, making the determinant zero. For the $(\alpha_k - \alpha_i)$ factors of the determinant, since they are negative, the eigenvalue to make this factor zero must be negative, as $(\alpha_k - \alpha_i - \lambda_k)$ for $\lambda_k < 0$ is positive. In conclusion, for the Question 5. Let M^m be a C^{∞} closed manifold, and let $N^n \subset M^m$ be a smooth embedded submanifold, where N^n is also assumed to be compact with no boundary. We say that N^n can be "moved off of itself" in M if a tubular neighborhood η of N^n with retraction map $\rho : \eta \to N^n$ admits a section $\sigma : N^n \to \eta$ that is disjoint from N. That is, $N^n \cap \sigma(N^n) = \emptyset \subset \eta \subset M$.

- Suppose the dimensions of the manifolds satisfy 2n < m. Prove that Nⁿ can be moved of itself in M.
- 2. To see that the dimension requirement above is necessary in general, show that $\mathbb{R}P^1 \subset \mathbb{R}P^2$ cannot be moved off of itself.
- Proof. 1. Denote the embedding of N^n into M^m by e. By Proposition 8.10 in the book, for any choice of $\varepsilon > 0$, we can choose an embedding \tilde{e} isotopic to e such that, for any $x \in$ $N^n, ||e(x) - \tilde{e}(x)|| < \varepsilon$ and $\tilde{e}(N^n) \cap N^n =$. Thus we can choose ε small enough that, for any $x \in N^n, ||e(x) - \tilde{e}(x)||$ is such that $\tilde{e}(N^n)$ is within the tubular neighborhood η , and $\tilde{e}(N^n) \cap N^n =$. This is because the only transversal intersection of two n-dimensional submanifolds of an m-dimensional submanifold with 2n < m is the empty intersection. We note that $\tilde{e} \circ e^{-1}$ is continuous, with image in η , so the ρ map is such that $\rho \circ \tilde{e} \circ e^{-1} = \tilde{I}d$, where $\tilde{I}d$ is a diffeomorphism of N^n . Thus $\tilde{e} \circ e^{-1}$ is a section that is disjoint from N^n , and so N^n can be moved off itself.
 - 2. We treat ℝPⁿ as Sⁿ/~, where x ~ -x. Thus when we embed ℝP¹ into ℝP², we require that the image of the embedding be an equator of S²/~. (The reason it must be an equator is that if it weren't, the image would cease to have x ~ -x) Thus we think about an equator of S² under this quotient relation. Embedding another ℝP¹ into ℝP² yields two equators in S²/~. Two equators of S² must intersect at two points, and these two points must be antipodal points. However, under our quotient relation, these two points are the same point. Thus the self-intersection number mod 2 of the embedding of ℝP¹ into ℝP² is 1. Therefore, another embedding of ℝP¹ cannot be isotoped away from itself in that their intersection is .

Question 6. Prove that if n is even, $\mathbb{R}P^n$ does not admit a nowhere zero vector field. Use the function

$$f: \mathbb{R}P^n \to \mathbb{R} \tag{18}$$

$$f([x_1, ..., x_{n+1}]) = \sum_{k=1}^{n+1} k x_k^2$$
(19)

Proof. First we note that $\mathbb{R}P^n = S^n/(x_1, ..., x_{n+1}) \sim (x_1, ..., x_{n+1}).$

We can construct an atlas of $\mathbb{R}P^n$ consisting of charts ψ_i with domain $U_i := \{[x_1, ..., x_{n+1}] | x_i \neq 0\}$, such that

$$\psi_i([x_1, \dots, x_{n+1}]) = (x_1/x_i, \dots, x_{i-1}/x_i, x_{i+1}/x_i, \dots, x_{n+1}/x_i)$$
(20)

Thus we have

$$\psi_i^{-1} : \mathbb{R}^n \to U_i \tag{21}$$

$$(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) \mapsto [x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_{n+1}]$$
(22)

Thus the composition

$$g_i := f \circ \psi_i^{-1} \tag{23}$$

$$g_i: \mathbb{R}^n \xrightarrow{\psi_i^{-1}} \mathbb{R}P^n \xrightarrow{f} \mathbb{R}$$

$$(24)$$

is given by

$$g_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) \mapsto x_1^2 + \dots + (i-1)x_{i-1}^2$$
(25)

$$+ i(1 - x_1^2 - \dots - x_{i-1}^2 - x_{i+1}^2 - \dots - x_{n+1}^2)$$
(26)

$$+ (i+1)x_{i+1}^2 + \dots + x_{n+1}^2$$
(27)

$$=\sum_{k=1}^{i-1} (k-i)x_k^2 + i + \sum_{k=i+1}^{n+1} (k-i)x_k^2$$
(28)

Computing the differential of this, we get

$$dg_i = \sum_{k=1}^{n+1} 2(k-i)x_k dx_k, \ k \neq i$$
(29)

Thus we see that the only point at which this is zero is when $x_k = 0, 1 \le k \le n+1, k \ne i$, and the only point U_i where this occurs in S^n under the quotient is at [0, ..., 0, 1, 0, ..., 0], where the 1 is at the i^{th} index.

In finding the index of a critical point u_i , we calculate the Hessian matrix of f, in order to find the number of its negative eigenvalues at u_i . $H_{kj} = \frac{\partial^2 f}{\partial x_k \partial x_j} = 2(k-i)\delta_{kj}$, where we remember that $k \neq i$. Thus the Hessian is a diagonal matrix of with the k^{th} entry equal to 2(k-i). In calculating the eigenvalues, we have the characteristic polynomial given by $\prod_{k=1}^{n+1}(2(k-i) - \lambda_k) = 0, k \neq i$. Thus the eigenvalues are given by $\lambda_k = 2(k-i), 1 \leq k \leq n+1, k \neq i$. Thus, for the critical value of (0, ..., 0, 1, 0, ..., 0) where the 1 is in the i^{th} entry, we have i-1 negative eigenvalues, and thus an index of (i-1)

Since f is a polynomial, it is smooth. We showed above that all eigenvalues of the Hessian of f at critical points where 1 is in the i^{th} index (covering all critical points) are $2(k-i), 1 \le k \le n+1, k \ne i$. Since none of the eigenvalues are zero (we have that $k \ne i$), f is a Morse function by definition.

Since f is a Morse function, we use Corollary 11.9 in the notes (Morse's Theorem) to calculate the Euler characteristic:

$$\chi(M) = \sum (-1)^i c_i(f) \tag{30}$$

where $c_i(f)$ is the number of critical points of f having index i. In our case, for each index i, we have one critical point, so $c_i(f) = 1$. Thus we have

$$\chi(\mathbb{R}P^n) = \sum_{i=0}^{n+1} (-1)^i$$
(31)

Since parity alternates with each term in the sum, we have the following information: if (n + 1) is even, then we have an equal number of 1s and -1s in our sum (since we omit one index since $k \neq i$), and so $\chi(\mathbb{R}P^n) = 0$. Thus $\chi(\mathbb{R}P^n) = 0$ if (n + 1) is even, i.e. n is odd. If (n + 1) is odd,

there is one more addition of 1, so if (n+1) is odd i.e. n is even, then $\chi(\mathbb{R}P^n) = 1$.

Therefore we know the answer. This is a result in the notes: we know from Proposition 9.15 that if a closed, oriented manifold N has nonzero Euler characteristic, then every vector field on N must contain a zero. In the spirit of this question being worth 10 points, I'll prove it here.

Suppose $\mathbb{R}P^n$ where *n* is even admits a nowhere zero vector field. Then by Corollary 9.10, since $T\mathbb{R}P^n$ is a smooth vector bundle, then $\chi(T\mathbb{R}P^n) = 0$. Consider the diagonal embedding $\Delta : \mathbb{R}P^n \to \mathbb{R}P^n \times \mathbb{R}P^n$ with Thom collapse map $\tau : \mathbb{R}P^n \times \mathbb{R}P^n \to (\mathbb{R}P^n)^{\nu_{\Delta}}$, with Thom class $u \in H^n(N_{\nu_{\Delta}})$. In the notes, Lemma 9.14 states that

$$\chi(\nu_{\Delta}) = \Delta^* \tau^*(u) \in H^n(\mathbb{R}P^n)$$
(32)

We proved in the previous problem that, with $\mathbb{R}P^n$, $\nu_{\Delta} \cong T\mathbb{R}P^n$. Thus

$$\chi(T\mathbb{R}P^n) = \Delta^* \tau^*(u) \in H^n(\mathbb{R}P^n)$$
(33)

We then have $\Delta^* \tau^*(u)([\mathbb{R}P^n])$ equals to Euler characteristic as shown on pg. 243 of the notes, using Lemma 9.13. This means that $\chi(T\mathbb{R}P^n) = \chi(\mathbb{R}P^n) = 0$. But this is a contradiction, as we in part d) that $\chi(\mathbb{R}P^n) = 1$ for *n* even. Thus $\mathbb{R}P^n$ cannot admit a nowhere zero vector field if *n* is even.