
Differential Topology Problems

Alec Lau

All uncredited problems written by Prof. Ralph Cohen.

Question 1. Let π : X̃ → X be a covering space. Let Φ be a smooth structure on X. Prove that

there is a smooth structure Φ̃ on X̃ so that π : (X̃, Φ̃)→ (X,Φ) is an immersion.

Proof. First we have to show that X̃ → X is a topological manifold. Since π is a local homeo-

morphism, X̃ is locally Euclidean. Let p1, p2 be distinct points such that π(p1) = π(p2) ∈ U ⊂ X,

for U an evenly covered open subset of X. Then the components of π−1(U) containing p1, p2 are,

by definition of a covering space, disjoint open subsets of X̃. If π(p1) 6= π(p2), since X is a mani-

fold, there exist disjoint subsets that contain π(p1), π(p2). These map under π−1 to disjoint open

subsets of X̃. Thus X̃ is Hausdorff. For second-countable-ness, we are inspired by Proposition

4.40 in Lee. We check first that each fiber of π is countable. For x ∈ X and an arbitrary point

p ∈ π−1(x). We consider a map β from π1(X,x) to π−1(x). Since the fundamental group of a

topological manifold is countable, if we can show surjectivity of such a map, we’re done. Choose

a homotopy class [f ] ∈ π1(X,x) of an arbitrary loop f : [0, 1] → X with f(0) = f(1) = x. From

the path-lifting property of covering spaces, there is a lift of f given by f̃ : [0, 1] → X̃ starting at

p0. The Monodromy Theorem for covering spaces shows that f̃(1) ∈ π−1(x) depends only on the

path class of f . Thus set β such that β[f ] = f̃(1). Since the components of X̃ are path-connected,

for any point p ∈ π−1(x), there is a path g̃ in X̃ from p0 to p, and then f = π ◦ f̃ is a loop in

X such that p = β[f ]. The set of all evenly covered open subsets is an open cover of X, and

thus has a countable subcover {Ui}. π−1(Ui) has one point in each fiber over Ui, so π−1(Ui) has

countable components. All components of the form π−1(Ui) are thus countable and an open cover

of X̃. Since the components are second-countable, X̃ is second-countable. Thus X̃ is a topological

manifold.

For Φ a smooth structure on X π←− X̃, we choose any point x ∈ X such that there exist two

neighborhood pairs U1, U2, V1, V2 ⊂ X such that x ∈ U1∩U2, x ∈ V1∩V2 and π−1(U1) 6= π−1(U2) ⊂

X̃ and V1, V2 are the domains of charts ψ1, ψ2, respectively, in Φ. Since π is continuous and maps

U1, U2 homeomorphically, π−1(x) ∈ π−1(U1)∩π−1(U2). Since ψ1, ψ2 ∈ Φ, ψ1◦ψ−1
2 is smooth. Now

we define a smooth structure Φ̃ on X̃ by composing the charts in Φ with π. To simplify notation,
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we call Ũi = π−1(Ui ∩ Vi),φi = ψi|Ui∩Vi i = 1, 2:

ψ̃i : X̃ → Rn (1)

ψ̃i(Ũi) = φi ◦ π(Ũi) (2)

See Figure 1. (Ũi, ψ̃i) are charts of X̃ because Ũi, Ui ∩Vi, and V1 ∩V2 are open, and the maps that

π−1(x)

π−1

π−1(x)

X̃

Rn Rn

ψ1
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x
X

Figure 1: Charts on X̃

compose these charts are homeomorphisms: ψi|V1∩V2
is still a homeomorphism. Now we need to

check that the transition maps for these charts are smooth:

ψ̃1 ◦ ψ̃−1
2 = (φ1 ◦ π) ◦ (φ2 ◦ π)−1 (3)

= (ψ1 ◦ π) ◦ π−1 ◦ φ2 (4)

On V1 ∩V2, we have π|V1∩V2 ◦π−1|V1∩V2 = Id|V1∩V2 . The identity map is smooth, so our transition

map is then ψ1 ◦ψ−1
2 , which we know is smooth. By combining our maximal smooth atlas Φ with

surjective π, we have thus created a smooth atlas Φ̃ on X̃. It remains to show that this smooth
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atlas is maximal. There is no such chart (W̃ , φ̃) not contained in this atlas, because π(W̃ ) is an

open subset of X, and thus has an open cover {Uα, ψα} of charts in the maximal smooth atlas of

X:

φ̃(W̃ ) = (∪αψα)|(∪αUα)∩π(W̃ ) ◦ π(W̃ ) (5)

Since φ̃ can be written in this way, (W̃ , φ̃) is contained in this smooth atlas. Thus this smooth

atlas is maximal, and π(X̃, Φ̃) → (X,Φ) is an immersion, as the charts with properly shrunken

domains have exactly one chart in X.

Question 2. Consider the DeRham homomorphism

∫
: Ωk(M)→ Ck(M ;R) (6)

for each k. Prove that
∫

is a map of cochain complexes. That is,

∫
dω = δ(

∫
ω) (7)

where δ : Ck(M ;R)→ Ck+1(M ;R) is the singular coboundary operator.

Proof. We start inductively. We want to show that the following diagram commutes:

Ω0(M) C0(M ;R)

Ω1(M) C1(M ;R)

∫
d δ∫

We have that f ∈ Ω0(M) is just a C∞ function on M to R. Consider a singular chain element

σ : ∆0 →M in C0(M). We have

∫
σ

f = f(σ(∆0)) ∈ R (8)

Thus
∫
f is clearly an element of Hom(C0(M),R) = C0(M ;R). Now let σ denote the singular

chain element σ : [0, 1]→ M . Now we take the boundary homomorphism δ of this element in the
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following way:

δ(

∫
f)(σ) = (

∫
f)(∂σ) (9)

= (

∫
f)(σ(1)− σ(0)) (10)

= (

∫
f)(σ(1))− (

∫
f)(σ(0)) (11)

= f(σ(1))− f(σ(0)) (12)

Now we take our same f ∈ Ω0(M) and take d of f to obtain df = f ′(t)dt ∈ Ω1(M). Taking the

De Rham homomorphism of this 1-form gives us, for σ ∈ C1(M),

(

∫
df)(σ) =

∫
σ

df
Stokes’ Theorem−−−−−−−−−−→

∫
∂σ

f = f(σ(1))− f(σ(0)) ∈ R (13)

Now we proceed with the inductive step, which is to prove that this diagram commutes:

Ωn(M) Cn(M ;R)

Ωn+1(M) Cn+1(M ;R)

∫
d δ∫

We proceed in the exact way as before: for ω ∈ Ωn(M), we take (
∫
ω)(σ), for σ : ∆n → M .

δ(
∫
ω)(σ) = (

∫
ω)∂σ

∑
i(−1)i(

∫
f)(σ)|[v0, ..., v̂i, ..., vn] ∈ R. In the other direction of the diagram,

we have dω, then (
∫
dω)(σ). This is equal to

∫
σ
dω =

∫
∂σ
ω through Stokes’ Theorem. This is then

equal to the same thing:
∑
i(−1)i(

∫
f)(σ)|[v0, ..., v̂i, ..., vn] ∈ R. Thus

∫
dω = δ

∫
ω.

Question 3. Suppose P p → Mn and Qq → Mn are smoothly embedded closed submanifolds of

Mn, which we also assume is closed. Suppose further that the submanifolds intersect transversely:

P p t Qq. Let νP → P be the normal bundle of P p in Mn, and let P p → ηP be a tubular

neighborhood.

1. Show that the restriction of νP to P p ∩Qq,

(νP )Pp∩Qq → P p ∩Qq (14)

is isomorphic to the normal bundle of P p ∩Qq in Qq.

2. Show that the space of ηP ∩Qq is a tubular neighborhood of P p ∩Qq in Qq.
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Proof. 1. Call our smooth embeddings f : P p → Mn, g : Qq → Mn. Since P p t Qq, we have

Dfx(TxP
p)⊕Dgx(TxQ

q) = TxM
n, for all x ∈ P p ∩Qq. Thus we have the diagram

νp νM

νp|Pp∩Qq P p Mn νq

P p ∩Qq Qq

iPp∩Qq

ip iq

f

⊂

∪ g

where the square in the middle is commutative. We examine the pullback bundle of νq by

the inclusion i : P p ∩Qq → Qq. We have, for the diagram

i∗νq νq

P p ∩Qq Qq

π|Qq

i

We have i∗νq = {(q, vq) ∈ P p ∩Qq × Vq|i(q) = πQq (vq)}. We have that νp|Pp∩Qq consists of

those very vq, since the q points in i∗νq are also elements of P p ∩Qq. Thus we can associate

every normal vector in νp|Pp∩Qq with a vector in νq over P p ∩Qq.

2. There really is not much to do here. Since a tubular neighborhood is diffeomorphic to a

neighborhood of the normal bundle, we need only consider a neighborhood of the normal

bundle of P p when restricted to P p ∩Qq. Since ηp is (up to diffeomorphism) a neighborhood

of a tubular neighborhood of P p, we have that ηp ∩ Qq consists of P p ∩ Qq and ηp|Pp∩Qq .

Since this is νp restricted to P p∩Qq, we know from the previous problem that it is isomorphic

to a neighborhood of the normal bundle of P p ∩ Qq in Qq, i.e. a tubular neighborhood of

P p ∩Qq in Qq.

Written by Wojciech Wieczorek.

Question 4. Let α0 < α1 < ... < αn be (n + 1) distinct nonzero real numbers. Consider g :

Rn+1 → R given by

g(x0, ..., xn) = α0x
2
0 + ...αnx

2
n (15)

and let f be the restriction of g to the sphere Sn. Show that f : Sn → R is Morse with 2(n + 1)
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non-degenerate critical points. Find all critical points of f and compute their index, i.e. the number

of negative eigenvalues of the Hessian Hf(x).

Proof. Since f is restricted to Sn, we can, without loss of generality, substitute x2
i for 1 − x2

0 −

...− x2
i−1 − x2

i+1 − x2
n in our equation for g:

f(x0, ..., xn) 7→ (α0 − αi)x2
0 + ...+ (αn − αi)x2

n + αi, (16)

where there is no term with xi. We have thus condensed Df down to a map of n coordinates.

Taking the derivative of f now, we get

Df = (2(α0 − αi)x0, 2(α1 − αi)x1, ..., 2(αn − αi)xn), (17)

Where the ith index is eliminated. If we take xi = ±1, all other xks must be zero to be in the

sphere, so this makes Df the zero vector, making the points when xi = ±1 both 2 critical points.

Since we were doing this without loss of generality, we can repeat this for all n + 1 points. Since

each (n+ 1) xk can be 1 or -1, we have 2(n+ 1) critical points.

We observe that the Hessian of f is the matrix where the ithjth entry is ∂2f
∂xi∂xj

. We notice that

this is δkj2(αj −αi), so the Hessian is a diagonal matrix with 2(αk −αi) as its diagonal entries, in

order. Remember that all α are distinct. Since none of these are equal to zero, the determinant

of the Hessian must be
n∏

k=0,k 6=i
(αk − αi) 6= 0. Because det(H(f)) is nonzero and independent of

coordinates, all critical points are non-degenerate, so f is morse.

As we have shown before, the critical points are (±1, 0, ..., 0), (0,±1, ...0), ..., (0, 0, ...,±1) (where

all indeces that are not ±1 are zero). Since α0 < α1 < ... < αn, and the entries of the Hessian can

then be 2(α0−αi), 2(α1−αi), etc., we can determine how many are negative entries. For the critical

points (0, ...,±1, ..., 0), the number of indeces less than i have negative values, as αi > than all of

those indeces’ αs. The determinant of this Hessian is simply 2n−1(α0 − αi)(α1 − αi)...(αn − αi),

where all (αk−αi),∀k < i is negative. The eigenvalues of this Hessian are then all values such that

each one of these terms summed with the corresponding eigenvalue is 0, making the determinant

zero. For the (αk −αi) factors of the determinant, since they are negative, the eigenvalue to make

this factor zero must be negative, as (αk − αi − λk) for λk < 0 is positive. In conclusion, for the
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critical points where the ith entry is ±1 and all others are zero, there are i negative eigenvalues.

Question 5. Let Mm be a C∞ closed manifold, and let Nn ⊂Mm be a smooth embedded subman-

ifold, where Nn is also assumed to be compact with no boundary. We say that Nn can be “moved

off of itself ” in M if a tubular neighborhood η of Nn with retraction map ρ : η → Nn admits a

section σ : Nn → η that is disjoint from N . That is, Nn ∩ σ(Nn) = ∅ ⊂ η ⊂M .

1. Suppose the dimensions of the manifolds satisfy 2n < m. Prove that Nn can be moved of

itself in M .

2. To see that the dimension requirement above is necessary in general, show that RP 1 ⊂ RP 2

cannot be moved off of itself.

Proof. 1. Denote the embedding of Nn into Mm by e. By Proposition 8.10 in the book, for

any choice of ε > 0, we can choose an embedding ẽ isotopic to e such that, for any x ∈

Nn, ||e(x) − ẽ(x)|| < ε and ẽ(Nn) ∩ Nn =. Thus we can choose ε small enough that, for

any x ∈ Nn, ||e(x) − ẽ(x)|| is such that ẽ(Nn) is within the tubular neighborhood η, and

ẽ(Nn) ∩ Nn =. This is because the only transversal intersection of two n−dimensional

submanifolds of an m−dimensional submanifold with 2n < m is the empty intersection. We

note that ẽ ◦ e−1 is continuous, with image in η, so the ρ map is such that ρ ◦ ẽ ◦ e−1 = Ĩd,

where Ĩd is a diffeomorphism of Nn. Thus ẽ ◦ e−1 is a section that is disjoint from Nn, and

so Nn can be moved off itself.

2. We treat RPn as Sn/ ∼, where x ∼ −x. Thus when we embed RP 1 into RP 2, we require

that the image of the embedding be an equator of S2/ ∼. (The reason it must be an equator

is that if it weren’t, the image would cease to have x ∼ −x) Thus we think about an equator

of S2 under this quotient relation. Embedding another RP 1 into RP 2 yields two equators

in S2/ ∼. Two equators of S2 must intersect at two points, and these two points must be

antipodal points. However, under our quotient relation, these two points are the same point.

Thus the self-intersection number mod 2 of the embedding of RP 1 into RP 2 is 1. Therefore,

another embedding of RP 1 cannot be isotoped away from itself in that their intersection is .
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Question 6. Prove that if n is even, RPn does not admit a nowhere zero vector field. Use the

function

f : RPn → R (18)

f([x1, ..., xn+1]) =

n+1∑
k=1

kx2
k (19)

Proof. First we note that RPn = Sn/(x1, ..., xn+1) ∼ (x1, ..., xn+1).

We can construct an atlas of RPn consisting of charts ψi with domain Ui := {[x1, ..., xn+1]|xi 6=

0}, such that

ψi([x1, ..., xn+1]) = (x1/xi, ..., xi−1/xi, xi+1/xi, ..., xn+1/xi) (20)

Thus we have

ψ−1
i : Rn → Ui (21)

(x1, ..., xi−1, xi+1, ..., xn+1) 7→ [x1, ..., xi−1, 1, xi+1, ..., xn+1] (22)

Thus the composition

gi := f ◦ ψ−1
i (23)

gi : Rn
ψ−1
i−−−→ RPn f−→ R (24)

is given by

gi(x1, ..., xi−1, xi+1, ..., xn+1) 7→ x2
1 + ...+ (i− 1)x2

i−1 (25)

+ i(1− x2
1 − ...− x2

i−1 − x2
i+1 − ...− x2

n+1) (26)

+ (i+ 1)x2
i+1 + ...+ x2

n+1 (27)

=

i−1∑
k=1

(k − i)x2
k + i+

n+1∑
k=i+1

(k − i)x2
k (28)
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Computing the differential of this, we get

dgi =

n+1∑
k=1

2(k − i)xkdxk, k 6= i (29)

Thus we see that the only point at which this is zero is when xk = 0, 1 ≤ k ≤ n+ 1, k 6= i, and the

only point Ui where this occurs in Sn under the quotient is at [0, ..., 0, 1, 0, ..., 0], where the 1 is at

the ith index.

In finding the index of a critical point ui, we calculate the Hessian matrix of f , in order to find

the number of its negative eigenvalues at ui. Hkj = ∂2f
∂xk∂xj

= 2(k− i)δkj , where we remember that

k 6= i. Thus the Hessian is a diagonal matrix of with the kth entry equal to 2(k− i). In calculating

the eigenvalues, we have the characteristic polynomial given by
∏n+1
k=1(2(k − i) − λk) = 0, k 6= i.

Thus the eigenvalues are given by λk = 2(k − i), 1 ≤ k ≤ n+ 1, k 6= i. Thus, for the critical value

of (0, ..., 0, 1, 0, ..., 0) where the 1 is in the ith entry, we have i − 1 negative eigenvalues, and thus

an index of (i− 1)

Since f is a polynomial, it is smooth. We showed above that all eigenvalues of the Hessian of f at

critical points where 1 is in the ith index (covering all critical points) are 2(k−i), 1 ≤ k ≤ n+1, k 6= i.

Since none of the eigenvalues are zero (we have that k 6= i), f is a Morse function by definition.

Since f is a Morse function, we use Corollary 11.9 in the notes (Morse’s Theorem) to calculate

the Euler characteristic:

χ(M) =
∑

(−1)ici(f) (30)

where ci(f) is the number of critical points of f having index i. In our case, for each index i, we

have one critical point, so ci(f) = 1. Thus we have

χ(RPn) =

n+1∑
i=0

(−1)i (31)

Since parity alternates with each term in the sum, we have the following information: if (n + 1)

is even, then we have an equal number of 1s and -1s in our sum (since we omit one index since

k 6= i), and so χ(RPn) = 0. Thus χ(RPn) = 0 if (n + 1) is even, i.e. n is odd. If (n + 1) is odd,
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there is one more addition of 1, so if (n+ 1) is odd i.e. n is even, then χ(RPn) = 1.

Therefore we know the answer. This is a result in the notes: we know from Proposition 9.15

that if a closed, oriented manifold N has nonzero Euler characteristic, then every vector field on

N must contain a zero. In the spirit of this question being worth 10 points, I’ll prove it here.

Suppose RPn where n is even admits a nowhere zero vector field. Then by Corollary 9.10,

since TRPn is a smooth vector bundle, then χ(TRPn) = 0. Consider the diagonal embedding

∆ : RPn → RPn × RPn with Thom collapse map τ : RPn × RPn → (RPn)ν∆ , with Thom class

u ∈ Hn(Nν∆). In the notes, Lemma 9.14 states that

χ(ν∆) = ∆∗τ∗(u) ∈ Hn(RPn) (32)

We proved in the previous problem that, with RPn, ν∆
∼= TRPn. Thus

χ(TRPn) = ∆∗τ∗(u) ∈ Hn(RPn) (33)

We then have ∆∗τ∗(u)([RPn]) equals to Euler characteristic as shown on pg. 243 of the notes,

using Lemma 9.13. This means that χ(TRPn) = χ(RPn) = 0. But this is a contradiction, as we

in part d) that χ(RPn) = 1 for n even. Thus RPn cannot admit a nowhere zero vector field if n

is even.
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