
Math 215C Problems

Alec Lau

Question 1. Let M be an n-dimensional manifold and g be a metric. Given a
(
k
l

)
-tensor field F , define

a
(
k
l+1

)
-tensor field ∇F by

(∇F )(Z,X1, ..., Xk, ω1, ..., ωl) := (∇ZF )(X1, ..., Xk, ω1, ..., ωl) (1)

where we recall

∇Z [F (X1, ..., Xk, ω1, ..., ωl)] = (∇ZF )(X1, ..., Xk, ω1, ..., ωl) +

k∑
i=1

F (X1, ...,∇ZXi, ..., Xk, ω1, ..., ωl) (2)

+

l∑
j=1

F (X1, ..., Xk, ω1, ...,∇Zωi, ..., ωl) (3)

where for a function f , ∇Zf = Zf .

a) Let f : M → R be a smooth function. Prove that

(∇2f)(X,Y ) = X(Y f)− (∇XY )f (4)

b) Not needed (convince oneself an expression is well-defined).

c) Prove that, in local coordinates,

∆f :=

n∑
i,j=1

(g−1)ij(∇2f)(∂i, ∂j) =
1√

det g
∂i((g

−1)ij
√

det g∂jf) (5)

where one may use the following facts from linear algebra without proof:

∂i(g
−1)jk = −(g−1)jl(g−1)mk∂iglm, ∂i log(det g) = (g−1)jk∂igjk (6)

Proof. a

Expanding (∇2f)(X,Y ), we have this equal to (∇(∇f))(X,Y ) by definition. By the definition of ∇,

we have this equal to (∇X(∇f))(Y ). From class and the footnote, we have

∇X [∇f(Y )] = (∇X(∇f))(Y ) +∇f(∇XY )⇒ (7)

(∇X(∇f))(Y ) = ∇X [∇f(Y )]−∇f(∇XY ) (8)

Again by the definition of ∇, the right-hand side then equal to ∇X [∇Y f ] − ∇∇XY f , which, again from

class and the footnote, is ∇X [Y f ]− (∇XY )f . Thinking of [Y f ] as another function, we have this equal to

X(Y f)− (∇XY )f . Thus (∇2f)(X,Y ) = X(Y f)− (∇XY )f .
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c

When we define ∆f =
∑n
i,j(g

−1)ij(∇2f)(∂i, ∂j), we can use our formula proved above to obtain∑n
i,j(g

−1)ij(∂i(∂jf) − (∇∂i∂j)f) =
∑n
i,j(g

−1)ij∂i(∂jf) − (g−1)ij(∇∂i∂j)f . Now we examine the second

term,
∑n
i,j −(g−1)ij(∇∂i∂j)f . We will drop the summation in front and use notation with the understand-

ing that repeated indices are summed over. This term is equal, by definition, to −(g−1)ijΓkij∂kf . We

have

−(g−1)ijΓkij∂kf = −(g−1)ij(
1

2
(g−1)kl(∂igj,l + ∂jgil − ∂lgij))∂kf (9)

=
1

2
(−(g−1)ij(g−1)kl∂igjl − (g−1)ij(g−1)kl∂jgil + (g−1)ij(g−1)kl∂lgij)∂kf (10)

= (
−1

2
(−g−1)ij(g−1)kl∂igjl +

−1

2
(g−1)ij(g−1)kl∂jgil)∂kf +

1

2
((g−1)ij(g−1)kl∂lgij)∂kf

(11)

In examining the first two terms, since the indices are dummy indices, we can relabel indices and rewrite

their sum as −(g−1)ij(g−1)kl(∂igjl)∂kf . We know from the first hint that this is equal to (∂i(g
−1)jk)∂kf ,

so we now have

= (∂i(g
−1)jk)∂kf +

1

2
(g−1)ij(g−1)kl∂lgij∂kf (12)

= (∂i(g
−1)jk)∂kf +

1

2
(∂l log(det g))∂kf (13)

(14)

as per the second hint. Then,

= (∂i(g
−1)jk)∂kf + (∂l log(

√
det g))∂kf (15)

= (∂i(g
−1)jk)∂kf +

1√
det g

(∂l
√

det g)∂kf (16)

(17)

Putting this all together, we have

∆f = (g−1)ij∂i(∂jf) + (∂i(g
−1)jk)∂kf +

1√
det g

(g−1)ij(∂l
√

det g)∂kf (18)

We now show that this is equal to 1√
det g

∂i((g
−1)ij

√
det g∂if). Since ∂i is a derivation, we can use the

‘product rule’ and apply ∂i to each of the three terms:

1√
det g

∂i((g
−1)ij

√
det g∂jf) =

1√
det g

((∂i(g
−1)ij)

√
det g∂jf + (g−1)ij(∂i

√
det g)∂jf + (g−1)ij

√
det g∂i∂jf)

(19)

= (∂i(g
−1)ij)∂jf +

1√
det g

(g−1)ij(∂i
√

det g)∂jf + (g−1)ij∂i(∂jf) (20)

By relabeling our dummy indices, we see that this is equal to (5).
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Question 2. Let γ : (a, b) → R3 be a smooth curve defined by γ(s) = (x(s), 0, z(s)) where (x′(s))2 +

(z′(s))2 = 1 and x(s) > 0 for all s ∈ (a, b). Let M denote the surface of revolution obtained by rotating γ

around the z axis:

M = {(x(s) cos θ, x(s) sin θ, z(s))|s ∈ (a, b), θ ∈ S1} (21)

and let g = ds2 + x(s)2dθ2 denote the induced metric from (R3, gEucl).

1. Compute the Christoffel symbols Γkij of the Levi-Civita connection of g with respect to the frame

{∂s, ∂θ}.

2. Write down the geodesic equations of a curve c(t) := (s(t), θ(t)) in M

3. Let c(t) be such that |c′(t)|g = 1 for all t, and let φ(t) denote the angle between c′(t) and ∂θ. Show

that x(s(t)) cosφ(t) is independent of t.

Proof. a

By the definition of our Christoffel symbols, we have

Γkij =
1

2
(g−1)kl(∂igjl + ∂jgil − ∂lgij) (22)

Given our metric g = ds2 + x(s)2dθ2, we see that gss = 1, gsθ = gθs = 0, gθθ = x(s)2. As a result,

(g−1)ss = 1, (g−1)sθ = (g−1)θs = 0, (g−1)θθ) = 1
x(s)

Thus we have

Γsss =
1

2
(g−1)ss(2∂sgss − ∂sgss) =

1

2
∗ 1 ∗ (2∂s(1)− ∂s(1)) = 0 (23)

Γθss =
1

2
(g−1)θθ(0 + 0− ∂θgss) = 0 (24)

Γssθ = Γsθs =
1

2
(g−1)ss(∂sgθs + ∂θgss) =

1

2
(∂s(0) + ∂θ(1)) = 0 (25)

Γθsθ = Γθθs =
1

2
(g−1)θθ(∂sgθθ + ∂θgsθ =

1

2x(s)2
(∂sx(s)2 + ∂θ(0)) =

x′(s)

x(s)
(26)

Γsθθ =
1

2
(∂θgθs + ∂θgθs − ∂sgθθ) =

1

2
(∂θ(0) + ∂θ(0)− ∂s(x(s)2)) =

1

2
(0 + 0 + 2x(s)x′(s)) = −x(s)x′(s)

(27)

Γθθθ =
1

2x(s)2
(∂θgθθ) =

1

2x(s)2
(∂θ(x(s)2)) = 0 (28)
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b

A geodesic satisfies the equation Dt(c′(t)) = 0 i.e. d2c(t)

dt2
+ Γijk( dc(t)

dt
)j( dc(t)

dt
)k = 0. Thus we have the

equations: (where ‘stuff that vanishes’ denotes factors of Christoffel symbols that are zero)

d2

dt2
s(t) = −Γsss(

ds(t)

dt
)2 − Γsθs

dθ(t)

dt

ds(t)

dt
− Γssθ

ds(t)

dt

dθ(t)

dt
− Γsθθ(

dθ(t)

dt
)2 (29)

= x(s)x′(s)(
dθ(t)

dt
)2, (30)

d2

dt2
θ(t) = −Γθss(stuff that vanishes)− 2Γθθs(

ds(t)

dt
)(
dθ(t)

dt
)− Γθθθ(stuff that vanishes) (31)

= −2
x′(s(t))

x(s(t))

ds(t)

dt

dθ(t)

dt
(32)

These are our geodesic equations.

c

cos(φ(t)) = g(c′(t),∂θ)
|c′(t)||∂θ|

by definition. We are given that |c′(t)| = 1, and |∂θ| =
√
g(∂θ, ∂θ) =

√
x(s)2 =

x(s). This is well-defined because, for all s in our range, x(s) > 0. Thus x(s) cos(φ(t)) = g(c′(t), ∂θ). Due

to linearity of g, g(c′(t), ∂θ) = g(s′(t) + θ′(t), ∂θ) = g(s′(t), ∂θ) + g(θ′(t), ∂θ) = 0 +x(s)2 dθ(t)
dt

. It remains to

show that this is constant with respect to t. We can do this by showing the derivative of this expression

with respect to t is 0. Differentiating with respect to t, we use the ‘product rule’ of our derivation to find

that

d(x(s) cos(φ(t))

dt
=
d(x(s)2 dθ(t)

dt
)

dt
= 2x(s)x′(s)θ′(t) + x(s)2θ′′(t) (33)

With knowledge that c(t) is our geodesic, we substitute in our equation for θ′′(t):

= 2x(s(t))x′(s(t))s′(t)θ′(t)− 2x(s(t))2s′(t)
x′(s(t))

x(s(t))
s′(t)θ′(t) (34)

= 2x(s(t))x′(s(t))s′(t)θ′(t)− 2x(s(t))x′(s(t))s′(t)θ′(t) = 0 (35)

Thus x(s(t))2 cos(φ(t)) does not depend on t.

Question 3. Let S2 denote the standard 2-sphere embedded in R3. Let U ⊂ S2 be the open subset defined

by U = {(x1, x2, x3) ∈ S2 : 1
2
< x3 < 1

2
}.

1. Let V ⊆ U be an open set. Are there nonzero vector fields Y defined in V such that ∇XY = 0 for

all X?

2. Using part a), conclude that S2 is not locally isometric to R2.

Proof. a

We can parametrize U inspired by the previous question:

U = {(x(s) cos(θ), x(s) sin(θ), z(s))|s ∈ (−π
6
,
π

6
), θ ∈ S1, x(s) = cos(s), z(s) = sin(s)} (36)
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We can use the metric of the previous problem because cos(s) > 0 for our s and (x′(s))2 + (z′(s))2 =

(− sin(s))2 + cos2(s) = 1. In finding ∇XY , we use the Christoffel symbols found in the previous problem,

plugging in x(s) = cos(s). We see to find a Y := ys∂s + yθ∂θ such that ∇XY = 0 for all X := xs∂s + xθ∂θ

in V .

∇XY =
∑
k

(
∑
i,j

xiyjΓ
k
ij +X(yk))Xk (37)

= (xsysΓ
s
ss + xsyθΓ

s
sθ + xθysΓ

s
θs + xθyθΓ

s
θθ + xs∂sys + xθ∂θys)xs∂s (38)

+ (xsysΓ
θ
ss + xsyθΓ

θ
sθ + xθysΓ

θ
θs + xθyθΓ

θ
θθ + xs∂syθ + xθ∂θyθ)xθ∂θ (39)

= (0 + 0 + 0 + xθyθx
′(s)x(s) + xs∂sys + xθ∂θys)xs∂s (40)

+ (0 + xsyθ
x′(s)

x(s)
+ xθys

x′(s)

x(s)
+ 0 + xs∂syθ + xθ∂θyθ)xθ∂θ (41)

Thus it remains to solve

xθyθx
′(s)x(s) + xθ∂θys + xs∂sys = 0, (42)

xsyθ
x′(s)

x(s)
+ xθys

x′(s)

x(s)
+ xs∂syθ + xθ∂θyθ = 0 (43)

Notice that in V , x(s) is never 0. Suppose now that s 6= 0, because if we find a Y that satisfies these two

equations in s 6= 0, by smoothness of vector fields it must satisfy this equation for s = 0 too. Suppose X

is such that xθ = 0, xs 6= 0. Then our top equation reduces to ∂sys = 0, so ys is constant with respect to

s since we assumed xs 6= 0. Now suppose X is such that xs = 0, xθ 6= 0. Then we know ys tan(s) = ∂θyθ.

Since we are assuming s 6= 0 for now, we have ys = cot(s)∂θyθ. But since we know that ys must be

constant with respect to s, we must have ∂θyθ = 0, which means yθ is constant with respect to θ, and

ys = 0. Plugging in ys = 0 to (35), we get that −xθyθ sin(s) cos(s) = 0 which implies that yθ = 0. Thus,

the only Y on V that yields ∇XY for any and all X on V is Y = 0, assuming s 6= 0. But to preserve

smoothness, Y must also be zero on s = 0 as well. There there does not exist a nonzero vector field Y on

V such that ∇XY = 0 for all X.

b

A local isometry preserves the metric, and thus preserves our connection, as we used our connection

in terms of our Christoffel symbols, which in problem 2 we defined in terms of our metric:

∇XY =
∑
k

(
∑
i,j

xiyjΓ
k
ij +X(yk))Xk (44)

=
∑
k

(
∑
i,j

xiyj(
1

2
(g−1)kl(∂igjl + ∂jgil − ∂lgij)) +X(yk))Xk (45)

Thus if we preserve our metric we preserve this connection. Choose p ∈ U defined in part a). For any

open neighborhood W of p, choose a neighborhood V ′ around p small enough that V ′ ⊆ V , where V was

the neighborhood used in part a), so that there exist no nonzero vector fields Y in V ′ with ∇XY = 0 for
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all X. In a neighborhood of R2, there exists a nonzero vector field Y such that ∇XY = 0 for all X: let

Y = Y i ∂
∂xi

, Y i ∈ R. In our flat space R2, we choose cartesian coordinates so gij = δij , and so ∂igkj = 0

for i, j, k ∈ {1, 2}, thus all of our Christoffel symbols vanish. Indeed, we have ∇XY := ∇X(Yi
∂
∂xi

) =

Xj
∂Y i

∂xj
∂
∂xi

+XjY i∇ ∂
∂xj

∂
∂xi

. Since Y i is independent of xj , ∂Y
i

∂xj
= 0 and so the first summand is equal to

zero. The second summand is also equal to zero because all Christoffel symbols in our coordinate choise

are zero. But since there is clearly, in any arbitrary neighborhood of R2 a nonzero Y such that ∇XY = 0

for all X, ∇ cannot be preserved with our isometry because there is no corresponding Y in V ′ ⊂ V that

has this property. Thus S2 is not locally isometric to R2.

Question 4. Let (M, g) be a Riemannian manifold. Let p ∈ M and W be a totally normal neighborhood

of p. For every ε > 0 such that B(p, 3ε) ⊂W , define

Wε := {(q, V, t) ∈ TM × R : q ∈ B(q, ε), V ∈ TqM, |V | = 1, |t| < 2ε} (46)

and a smooth function F : Wε → R by

F (q, V, t) = [d(expq(tV ), p)]2 (47)

1. After choosing ε > 0 sufficiently small, prove that ∂2F
∂t2

> 0 on Wε.

2. Let ε be as in a). If q1, q2 ∈ B(p, ε) and γ is a minimizing geodesic from q1 to q2, show that d(γ(t), p)

attains its maximum at one of the endpoints of γ.

3. Prove that B(q, ε) is convex.

Proof. a

Let F be defined as in the problem statement. Since our domain of F is (q, t) ∈ B(p, ε)×R ⊆W ×R,

a totally normal neighborhood, the exponential map is well-defined. Since geodesics are locally length-

minimizing curves, choose ε small enough such that there exists a minimizing geodesic from p to q for any

q in our B(p, 2ε) domain. This means that the distance between two points is the length of the geodesic

with those two points as endpoints. We then have

F (q, V, t) = [d(expq(tV ), p)]2 (48)

= [d(γ(1, q, tV ), p)]2 (49)

We know from class that γ(1, q, tV ) = γ(t, q, V ). Following the hint, we plug in p = q:
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= [d(γ(t, p, V ), p)]2 (50)

= [

∫ t

0

|γ̇(t′, p, V )|dt′]2 (51)

= [

∫ t

0

√
g(γ̇(t′, p, V ), γ̇(t′, p, V ))dt′]2 (52)

since p is γ(0, p, V ) for the γ provided by the definition of the exponential map. From now on we will

simplify notation and denote γ̇(t′, p, V ) by γ̇(t′). Differentiating (5) by t, we have:

d

dt
([

∫ t

0

√
g(γ̇(t′), γ̇(t′))dt′]2) = 2[

∫ t

0

√
g(γ̇(t′), γ̇(t′))dt′] · d

dt
(

∫ t

0

√
g(γ̇(t′), γ̇(t′))dt′) (53)

For the second factor, we have by the Leibniz Integral Rule,

d

dt
(

∫ t

0

√
g(γ̇(t′), γ̇(t′))dt′) =

√
g(γ̇(t), γ̇(t))

d

dt
(t)−

√
g(γ̇(0), γ̇(0))

d

dt
(0) +

∫ t

0

d

dt

√
g(γ̇(t′), γ̇(t′))dt′ (54)

= |γ̇(t, q, V )| − 0 +

∫ t

0

[
g(D
dt

(γ̇(t′)), γ̇(t′)) + g(γ̇(t′), D
dt

(γ̇(t′))]dt′

2
√
g(γ̇(t), γ̇(t))

(55)

= |γ̇(t, q, V )| − 0 + 0 (56)

since 0 is a constant, and γ is a geodesic, so by definition D
dt
γ̇ = 0. Thus

dF

dt
= 2[

∫ t

0

√
g(γ̇(t′), γ̇(t′))dt′] ·

√
g(γ̇(t), γ̇(t)) (57)

Differentiating again, using (8) and (9), we get

d2F

dt2
= 2g(γ̇(t), γ̇(t)) + 2[

∫ t

0

√
g(γ̇(t′), γ̇(t′))dt′] · (

g(D
dt

(γ̇(t′)), γ̇(t′)) + g(γ̇(t′), D
dt

(γ̇(t′)))

2
√
g(γ̇(t′), γ̇(t′)

) (58)

= 2g(γ̇(t), γ̇(t)) + 0 (59)

We have that d2F
dt2

(p, V, 0) = 2|V |2 = 2. Since F is smooth, this second derivative is continuous, so we

can choose ε small enough such that for t < 2ε within B(q, ε) ⊆M we have d2F
dt2

> 0.

b

First we examine [d(γ(t), p)]2. Because we are in the same domain as above, we can create a geodesic

between any two points in B(p, ε). The distance between any two points in B(p, ε) has to be less than 2ε,

and so we can have expq1(tV ) be any point in B(p, ε) for any q1 ∈ B(p, ε) with |V | = 1, depending on V .

Because we are in a totally normal neighborhood of p, exp is a diffeomorphism, and thus we can choose V
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such that |V | = 1 and expq(t2V ) = q2 for some t2 < 2ε (|t2V | is whatever length we need to get to q2; we

are all good because |t2V | ≤ |t2||V | < 2ε). By uniqueness of geodesics, this map coincides with γ from q1

to q2. Thus we can consider F (q1, V, t2) instead of [d(γ(t), p)]2.

Since ε is given as before, we are assured that F (q1, V, t) is concave up everywhere for 0 ≤ t ≤ t2. This

means there cannot be a t′ ∈ (0, t2) where F (q1, V, t
′) attains a maximum. If there where, F would have

to be concave down at t′, violating what we proved in a). Thus the maximum value of F is achieved at

the boundary, either at t = 0 or t = t2, i.e.

max[F (q1, V, t)] = max[[d(expq1(tV ), p)]2] = max[[d(γ(t), p)]2] (60)

= max[[d(γ(0), p)]2, [d(γ(t2), p)]2] (61)

= max[[d(q1, p)]
2, [d(q2, p)]

2] (62)

where (13) is by the uniqueness of geodesics, (14) is due to part a), and (15) is by definition.

If a2 > b2, a, b ∈ R+,0, then a > b. We know that distance nonnegative. Thus, since the maximum of

the distance squared is achieved at the endpoints of γ, the maximum of the distance is achieved at the

endpoints of γ.

c

Suppose we have arbitrary q1, q2 ∈ B(p, ε), and the geodesic between the two. Since q1, q2 ∈ B(p, ε),

d(q1, p) < ε and d(q2, p) < ε. Since we proved in b) that the maximum distance between γ(t) and p is

attained on the endpoints of γ(t), i.e. q1 or q2. Thus, d(γ(t), p) < ε for all t, since the maximum distance,

either d(q1, p) or d(q2, p), is still less than ε. Thus γ(t) is completely contained in B(q, ε). Since q1, q2 were

arbitrary, this works for every q1, q2 ∈ B(p, ε), so B(p, ε) is convex.

Question 5. Give an example of a Riemannian manifold that is not complete, but so that every p and q

can be joined by a length-minimizing geodesic. Give an example of a Riemannian manifold for which any

two points p and q can be joined by a geodesic, but for which there exist two points p̃q̃ which cannot be

joined by a length-minimizing geodesic.

Proof. The plane {(x, y) ∈ R2; y > 0} with metric g11 = g22 = 1
y2
, g12 = g21 = 0 is not complete (consider

the sequence an = (x0,
1
n

). Trivially the sequence’s limit point is (x0, 0), x0 ∈ R, which is not in the upper

half plane), and we know from Do Carmo p.g. 73 that, for each pair of points in the upper half-plane,

there is a length minimizing geodesic between the two.

As for a manifold where any points p and q can be joined by a geodesic, but there exist p̃, q̃ can cannot

be joined by a length-minimizing geodesic, consider a punctured sphere: M = S2 − {0, 0, 1}. Any two

points in M can be joined by a great circle as shown in class. However, let p̃ = ( 1
2
, 0,
√
3

2
), q̃ = (− 1

2
, 0,
√
3

2
).

The length-minimizing geodesic would be the arc parametrized by γ(t) = (cos(tπ
3

+ π
3

), 0, sin(tπ
3

+ π
3

)),

but this passes through (0, 0, 1). However, the arc parametrized by (cos(−t 2π
3

+ π
3

), 0, sin(−t 2π
3

+ π
3

)) is a

geodesic with p̃, q̃ as endpoints.
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Question 6. Let (M, g) be a Riemannian manifold. Suppose that (M, g) is locally conformally flat. Show

that

κij =
1

ρ2
((∂i log ρ)2 + (∂j log ρ)2 −

n∑
l=1

(∂l log ρ)2 − ∂2
i log ρ− ∂2

j ρ) (63)

where, for each p ∈ U, κij(p) := κ(
∏
ij,p) is the sectional curvature of the 2-plane

∏
ij,p ⊂ TpM spanned by

∂i and ∂j.

Proof. First we calculate the Christoffel symbols with this metric. We have

Γkij =
1

2

∑
l

glk(∂igil + ∂jgli − ∂lgij) (64)

=
1

2

∑
l

1

ρ2
δlk(∂i(ρ

2δjl) + ∂j(ρ
2δli)− ∂l(ρ2δij)) (65)

=
1

2

∑
l

1

ρ2
δlk(δjl2ρ∂iρ+ ρ2∂iδjl + δli2ρ∂jρ+ ρ2∂jδli − δij2ρ∂lρ− ρ2∂lδij) (66)

=
1

2

∑
l

1

ρ2
δlk(δjl2ρ∂iρ+ δli2ρ∂jρ− δij2ρ∂lρ) (67)

=
∑
l

(
1

ρ
δlkδjl(∂iρ) +

1

ρ
δlkδli(∂jρ)− 1

ρ
δijδlk(∂lρ)) (68)

= δkj
1

ρ
(∂iρ) + δki

1

ρ
(∂jρ)− δijδlk

1

ρ
(∂lρ) (69)

= δkj ∂i(log ρ) + δki ∂j(log ρ)− δijδlk∂l(log ρ) (70)

Where (22) is via the definition of the metric, (23) is due to the definition of a derivation, (24) is due

to δ being scalar-valued, (26) is splicing the deltas together, and (27) is using the axiom of a derivation.

Next we compute Rijij . In keeping consistent with notation in Do Carmo, we will have Xi := ∂i. We

have

Rijij = 〈R(Xi, Xj)Xi, Xj〉 (71)

= Rlijigli (72)

= Rlijiρ
2δli (73)

= Rjijiρ
2 (74)

= (
∑
l

ΓliiΓ
j
jl −

∑
l

ΓljiΓ
j
il + ∂jΓ

j
ii − ∂iΓ

j
ji)ρ

2 (75)

Calculating our Christoffel symbols, we have

9



Γlii = δli∂i log ρ+ δli∂i log ρ− ∂l log ρ (76)

Γjjl = δjl ∂j log ρ+ ∂l log ρ− δjl∂j log ρ (77)

Γlji = δli∂j log ρ+ δlj∂i log ρ (78)

Γjil = δjl ∂i log ρ− δil∂j log ρ (79)

Γjii = −∂j log ρ (80)

Γjji = ∂i log ρ (81)

Since now i, j are fixed and distinct. In sparing the grader many lines of boring computation, we shall

provide intermediate solutions:

∑
l

ΓliiΓ
j
jl = 2(∂i log ρ)2 −

∑
l

(∂l log ρ) (82)

∑
l

ΓljiΓ
j
il = −(∂j log ρ)2 + (∂i log ρ)2 (83)

and, trivially,

∂jΓ
j
ii = −∂2

j log ρ (84)

∂iΓ
j
ji = ∂2

i log ρ (85)

Thus Rijij = (∂i log ρ)2+(∂j log ρ)2−
∑
l(∂l log ρ)2−∂2

j log ρ−∂2
i log ρ. Since κij =

Rijij
|Xi∧Xj |2

, it remains

to calculate the denominator.

|Xi ∧Xj |2 = (
√
|Xi|2|Xj |2 − g(Xi, Xj)2)2 (86)

= (

√
(
√
ρ2)2(

√
ρ2)2 − 0)2 (87)

= ρ2 (88)

Thus,

κij =
(∂i log ρ)2 + (∂j log ρ)2 −

∑
l(∂l log ρ)2 − ∂2

j log ρ− ∂2
i log ρ

ρ2
(89)

Question 7. Let M = Rn+1 with the metric g = (dx1)2 + ... + (dxn)2 − (dxn+1)2. Define M =

{(x1, ..., xn, xn+1) ∈ Rn+1 : (xn+1)2 −
∑n
i=1(xi)2 = 1} and suppose g is the induced metric. Show that

(M, g) has constant sectional curvature -1.
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Proof. First we find out induced metric. We examine the tangent vectors ofM . Consider the tangent vector

∂i of Rn+1. In visualizing the tangent vector, we see for the ith tangent vector, we see a contribution from

the ∂i vector and some contribution of the ∂n+1 vector. Thus we write this tangent vector as ∂i + hi∂n+1

for some hi ∈ R. M is given by
∑n(xi)2 − (xn+1)2 + 1 = 0, so we have

0 = (∂i + hi∂n+1)(

n∑
(xi)2 − (xn+1)2 + 1) (90)

= 2xi − 2hixn+1 (91)

⇒ hi =
xi

xn+1
(92)

So our tangent vectors are hi = xi

xn+1 . For i = 1, 2, ..., n, these span the tangent vectors ofM . Thus our

metric is gij = g(∂i + xi

xn+1 ∂n+1, ∂j + xj

xn+1 ∂n+1) = g(∂i + xi

xn+1 ∂n+1, ∂j + xj

xn+1 ∂n+1). Since g is diagonal,

this result is δij − xixj

(xn+1)2
.

We now check that the g given above is Riemannian, because g is not Riemannian. Consider

g(

n∑
i

V i(∂i +
xi

xn+1
∂n+1),

n∑
j

V j(∂j +
xj

xn+1
∂n+1)) =

n∑
i

V iV j(δij −
xixj

(xn+1)2
) (93)

=

n∑
i

(V i)2 − (xV )2

(xn+1)2
(94)

= |V |2 − (x · V )2

(xn+1)2
(95)

From Cauchy-Schwarz, we know that (x · V )2 ≤ |x|2|V |2 ≤ (xn+1)2|V |2. Thus, (x·V )2

(xn+1)
≤ |V 2| with

equality if and only if V = 0, so g is in fact Riemannian.

Now we calculate curvature. We use Theorem 2.5 in Do Carmo:

K(x, y)−K(x, y) = 〈B(x, x), B(y, y)〉 − |B(x, y)|2 (96)

for orthonormal x and y. Let x = ∂i and y = ∂j .

For the metric gij = δij , we see that, since the metric is constant valued, all Christoffel symbols

associated with g are 0, so K(x, y) = 0. By definition, B(x, y) = ∇xy − ∇xy. Since we are subtracting

the tangent vector ∇xy from ∇xy, we are left with the projection of ∇xy onto some normal vector N :

B(x, y) = 〈∇xy,N〉
〈N,N〉 N . To find N , we demand g((x1, ..., xn,

∑n
i x

i

xn+1 ), N) = 0, where the first argument is

our tangent vector from above. If we plug in N = (x1, ..., xn, xn+1), we get this inner product equal to∑n
i (xi)2 − xn+1

∑n
i (x

i)2

xn+1 = 0. We also see that g(N,N) =
∑n
i (xi)2 − (xn+1)2 = −1. Now we have
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K(x, y) = 〈 〈∇xx,N〉|N |2 N,
〈∇yy,N〉
|N |2 N〉 − | 〈∇xy,N〉〈N,N〉 N |

2 (97)

= 〈 〈x,∇xN〉|N |2 N,
〈y,∇yN〉
|N |2 N〉 − | 〈y,∇xN〉〈N,N〉 N |

2 (98)

(99)

Due to compatibility of the metric. Also, we notice that ∇xN = xi ∂N
j

∂xi
∂i = xi∂i = x, so we now have

K(x, y) = 〈 〈x, x〉−1
N,
〈y, y〉
−1

N〉 − | 〈y, x〉−1
N |2 (100)

= 〈−N,−N〉 − 0 (101)

= (−1)2〈N,N〉 (102)

= −1 (103)

because x, y are orthonormal.
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