Math 215C Problems
Alec Lau

Question 1. Let M be an n-dimensional manifold and g be a metric. Given a (’f) -tensor field F', define

a (lfl)—tensor field VF by

(VE)Y(Z, X1, ., X, wiy eoywi) i= (V2 F) (X1, ooy Xiy w1,y veey wy) (1)

where we recall
k
V2[F(X1, . Xy wiy ooy wi)] = (V2 F) (X1, o, Xy wts ey wt) + Y F(X1, 00, Vo Xy oo, Xy w1, w1) - (2)
=1
l
+ ) F(X1, e Xpywi, o, Vawi, wi) - (3)
j=1

where for a function f, Vzf =2Zf.

a) Let f: M — R be a smooth function. Prove that
(VX Y) = X(Y ) = (VxY)f (4)

b) Not needed (convince oneself an expression is well-defined).
¢) Prove that, in local coordinates,

n

Af =3 g7V H)(0:.0;) = ﬁ&((g*w Vet g9, f) (5)

i,j=1

where one may use the following facts from linear algebra without proof:

Bi(g™ )" = —(g7 ") (g7 )™ Digim, Oi log(det g) = (g9~ ")"*Digjn (6)

Proof. a

Expanding (V2£)(X,Y), we have this equal to (V(Vf))(X,Y) by definition. By the definition of V,

we have this equal to (Vx(Vf))(Y). From class and the footnote, we have

Vx[VIY)] = (Vx(VIY)+ VF(VxY) = (7)

(Vx(VINY) = Vx[VF(Y)] = Vf(VxY) (8)

Again by the definition of V, the right-hand side then equal to Vx[Vy f] — Vv v f, which, again from
class and the footnote, is Vx[Y f] — (VxY)f. Thinking of [Y f] as another function, we have this equal to
X(Yf) = (VxY)f. Thus (V2 f)(X,Y)=X(Yf) — (VxY)f.



When we define Af = sz(g—l)”(v%)(@,aj), we can use our formula proved above to obtain

Sria N (0:05) — (Vo,05)f) = X7 (97 )7 0:(05f) — (971)7 (V5,0;)f. Now we examine the second
term, > —(g7")"(Vs,0;)f. We will drop the summation in front and use notation with the understand-

ing that repeated indices are summed over. This term is equal, by definition, to —(gfl)iijj(‘)kf. We

have
—(g7 )0k f = _(971)”(%(971)“(&% + 0591 — 019i5))On f 9)
= %(*(g’l)” (g~ M0ign — (977 (g )90 + (97 (97 ") 0ugij) Ok f (10)
= (5 (07767 duga + 56767 D000 f + (67 g7 Dugis )00 f

(11)

In examining the first two terms, since the indices are dummy indices, we can relabel indices and rewrite
their sum as —(g~ )% (¢ 1) (8:9;1)Or f. We know from the first hint that this is equal to (8;(g~*)"*)dk f,

so we now have

= @7 YHI0S + (a7 (g7 DugigOn s (12)
= (g™ Y")0hS + 5 (Orlog(det g))04 (13)
(14)
as per the second hint. Then,

= (3i(g™")Y")Onf + (1 log(v/det g)) O f (15)
= O™ VIO + g /et )k (16)
(17)

Putting this all together, we have

1

Af=(g7)70i(05) + (99~ ") )Ouf + (9717 (av/det g)Or f (18)

det g

We now show that this is equal to \/%tg&-((g_l)”\/det g0; f). Since 9; is a derivation, we can use the

‘product rule’ and apply 0; to each of the three terms:

1 —1yij 1 —1yij —1yij —1yij
;i VA if) = i v/ det go; 0i+/det g)0; v/ det g0, 0;
(19)
iy 1 - iy
= (Di(g™")"7)9; “17(8;+/det g)0; 1Y 9;(9; 20
O™ )0sS + <= 0™V O/t a0, + 7 00if)  (0)
By relabeling our dummy indices, we see that this is equal to (5). O



Question 2. Let v : (a,b) — R® be a smooth curve defined by v(s) = (x(s),0,2(s)) where ('(s))* +

(2 (8))?> =1 and z(s) > 0 for all s € (a,b). Let M denote the surface of revolution obtained by rotating ~

around the z axis:

M = {(z(s) cos 0, z(s) sin b, z(s))|s € (a,b),0 € Sl} (21)

and let g = ds® + x(s)*d6? denote the induced metric from (R*, gmyer).-

1. Compute the Christoffel symbols I‘fj of the Levi-Civita connection of g with respect to the frame
{0s,00}-
2. Write down the geodesic equations of a curve c(t) := (s(t),0(t)) in M
3. Let c(t) be such that |c'(t)|g = 1 for all t, and let ¢(t) denote the angle between c'(t) and dp. Show
that z(s(t)) cos ¢(t) is independent of t.
Proof. a

By the definition of our Christoffel symbols, we have

1

Iy = 5(971)’“(31'93'1 + 0jgi — O1g:5) (22)

Given our metric g = ds® + x(s)%df?, we see that gss = 1,950 = gos = 0,906 = 2(s)?. As a result,

(97"

i
0
FSS
I
0

FSO

s
PGQ

0
1Y)

=1, (971)59 = (971)95 =0, (971)99) = ﬁ Thus we have
= 07 (20000 — Dgs) = 5 % 1% (20.(1) — 0,(1) = 0 (23)
= 55O +0 - Bag.) =0 (24
=T = 07" Oug0s + 000) = S(0,(0) + 3p(1)) = 0 (25)
= ng — %(g—l)es(ﬁsggg + Oogso = 2:5(18)2 ((93:1:(5)2 + 89(0)) _ il((;)) (26)
= 5 (@00 + Bogos — Dsgun) = 2 (36(0) + B6(0) ~ B ((s)*) = 3 0+ 0+ 2e(s)a’(5)) = ~a(s)a’ (5)
(21)
— ot O000) = 5 Ou((5)) =0 (28)



A geodesic satisfies the equation Dy(c'(t)) = 0 i.e. diﬁg) + F;k(dfi—(;))j(dz(:))k = 0. Thus we have the

equations: (where ‘stuff that vanishes’ denotes factors of Christoffel symbols that are zero)

d> o ds(t).s . dO(t)ds(t) . ds(t)dO(t) . dO(t).s

5 = T (= 7)" = Tos— === = Too— ~ =~ —Too(—,~) (29)
= afs)a! () (D2, (30)

%H(t) = —T,(stuff that vanishes) — QFZS(dZ(:) )(%(tt)) — ')y (stuff that vanishes) (31)

o' (s(t)) ds(t) do(t)

_Qx(s(t)) dt dt

These are our geodesic equations.

cos(g(t)) = % by definition. We are given that |c/(£)] = 1, and [9s| = \/g(0s, D) = /z(5)? =
z(s). This is well-defined because, for all s in our range, z(s) > 0. Thus z(s) cos(¢(t)) = g(c'(t),s). Due
to linearity of g, g(c'(t),8s) = g(s'(t) +6'(t), o) = g(s'(t), 09) + g(0' (1), Do) = 0+m(3)2%<:). It remains to
show that this is constant with respect to t. We can do this by showing the derivative of this expression

with respect to t is 0. Differentiating with respect to t, we use the ‘product rule’ of our derivation to find

that

— 2(s(t)2’ ((1))s' ()0 (t) — 2a(s(1))%s' (8) z’((j((f)))) S ()6 (1) (34)
— 20(s(t)a (s(6))5' (16 (£) — 2a(s(2))a’ (s(£))s' (' (£) = 0 (35)
Thus x(s(t))? cos(¢(t)) does not depend on t. O

Question 3. Let S? denote the standard 2-sphere embedded in R3. Let U C S? be the open subset defined
by U ={(z",2%2°) €S*:  <a® <1}
1. Let V C U be an open set. Are there nonzero vector fields Y defined in V' such that VxY = 0 for
all X 2

2. Using part a), conclude that S* is not locally isometric to R*.

Proof. a

We can parametrize U inspired by the previous question:

U = {(z(s) cos(0), z(s) sin(0), 2(s))|s € (f%, %), 0 €S, a(s) = cos(s), z(s) = sin(s)} (36)



We can use the metric of the previous problem because cos(s) > 0 for our s and (z'(s))* + (2/(s))? =
(—sin(s))? + cos?(s) = 1. In finding VxY, we use the Christoffel symbols found in the previous problem,

plugging in z(s) = cos(s). We see to find a Y := ys0s + yo9p such that VxY =0 for all X := x,0s + 29

inV.
VxY =3 O @yl + X (yr)) Xa (37)
ki,
= (zsysTes + syolao + ToysTos + Toyoloe + Ts0sys + T900Ys )T s0s (38)
+ (2sysT + 25yeT % + zoysThs + zoyelhe + £:05y0 + T9Oeye)Le0s (39)
= (04 040+ zeyez’ (8)x(8) + 250sys + T9O0Ys)Ts0s (40)

z'(s) z'(s)

+ (0 + zsy0 + xoyYs + 0+ 25050 + 2600Y0) 600 (41)
(s) (s)
Thus it remains to solve
Toyox (5)z(8) + 200pYs + T50sys = 0, (42)
/ /
xsyex (5) + Toys z(s) + x:05Y6 + To0pyo = 0 (43)
x(s) z(s)

Notice that in V, x(s) is never 0. Suppose now that s # 0, because if we find a Y that satisfies these two
equations in s # 0, by smoothness of vector fields it must satisfy this equation for s = 0 too. Suppose X
is such that zg = 0,25 # 0. Then our top equation reduces to dsys = 0, so ys is constant with respect to
s since we assumed z; # 0. Now suppose X is such that z, = 0,29 # 0. Then we know y, tan(s) = deys.
Since we are assuming s # 0 for now, we have ys, = cot(s)Jsye. But since we know that y, must be
constant with respect to s, we must have Opyp = 0, which means yy is constant with respect to 6, and
ys = 0. Plugging in ys = 0 to (35), we get that —xgye sin(s) cos(s) = 0 which implies that yo = 0. Thus,
the only Y on V that yields VxY for any and all X on V is Y = 0, assuming s # 0. But to preserve
smoothness, Y must also be zero on s = 0 as well. There there does not exist a nonzero vector field Y on

V such that VxY =0 for all X.

b

A local isometry preserves the metric, and thus preserves our connection, as we used our connection

in terms of our Christoffel symbols, which in problem 2 we defined in terms of our metric:

VxY =3 (3 wiylh + X (ye)) X (44)
ki

= S w50 @ugit + Bigu — Duges)) + X () X (45)
kg

Thus if we preserve our metric we preserve this connection. Choose p € U defined in part a). For any
open neighborhood W of p, choose a neighborhood V'’ around p small enough that V' C V, where V was

the neighborhood used in part a), so that there exist no nonzero vector fields Y in V' with VxY = 0 for



all X. In a neighborhood of ]RQ, there exists a nonzero vector field Y such that VxY = 0 for all X: let

Y =Y 321‘ ,Y' € R. In our flat space R?, we choose cartesian coordinates so gij = 0s5, and so Oigr; = 0

for i,j,k € {1,2}, thus all of our Christoffel symbols vanish. Indeed, we have VxY := Vx(Yiz%) =

X]’%% + XYV 5 %. Since Y is independent of 27, g’;; = 0 and so the first summand is equal to
‘ 927 9% :

zero. The second summand is also equal to zero because all Christoffel symbols in our coordinate choise

are zero. But since there is clearly, in any arbitrary neighborhood of R? a nonzero Y such that VxY =0

for all X, V cannot be preserved with our isometry because there is no corresponding Y in V' C V that

has this property. Thus S? is not locally isometric to R?. O

Question 4. Let (M,g) be a Riemannian manifold. Let p € M and W be a totally normal neighborhood

of p. For every ¢ > 0 such that B(p,3¢) C W, define
We:={(q,V,t) e TM xR : q € B(q,e),V € T,M,|V| =1,|t| < 2¢} (46)
and a smooth function F': W, — R by
F(q,V,t) = [d(exp, V), p)]* (47)

1. After choosing € > 0 sufficiently small, prove that %QTI; >0 on W..

2. Lete be asin a). If q1,q2 € B(p,€) and v is a minimizing geodesic from g1 to qz2, show that d(~(t), p)

attains its mazimum at one of the endpoints of ~y.

3. Prove that B(q,€) is conver.

Proof. a

Let F be defined as in the problem statement. Since our domain of F'is (q,t) € B(p,e) x RC W X R,
a totally normal neighborhood, the exponential map is well-defined. Since geodesics are locally length-
minimizing curves, choose € small enough such that there exists a minimizing geodesic from p to ¢ for any
g in our B(p,2¢) domain. This means that the distance between two points is the length of the geodesic

with those two points as endpoints. We then have

F(q,V,t) = [d(exp, (tV),p)]* (48)

=[d((1,4,tV),p))? (49)

We know from class that v(1,q,tV) = (¢, q,V). Following the hint, we plug in p = ¢:



= [d(~(t,p,V),p)]? (50)

/ 5t p, V) e (51)

- / VaG @ p V) AW p V)t (52)

since p is v(0,p, V) for the v provided by the definition of the exponential map. From now on we will

simplify notation and denote %(¢',p, V) by §(t'). Differentiating (5) by ¢, we have:

2 [/ VIG) AT ,2/ JIGE) A @)t - dt/mdt (53)

For the second factor, we have by the Leibniz Integral Rule,

G VaGEO AN = VoGO3 50 - VaGO IO GO + [ 5 VaGEAEN (64

y B (G (), 4(E) + 9(3(¢), F ()]t
=litaV-o+ [ 2/4G0,30) )
since 0 is a constant, and « is a geodesic, so by definition %"y = 0. Thus
dF ¢ . _ / T
o 2[/0 Va(y(#), (t)dt] - /g (3(2), ¥(t)) (57)
Differentiating again, using (8) and (9), we get
’F ey 9(Z (7)), () + g(3(t"), Z (7))
i = 00,50 +2( [ VA N ORI b
=29(5(t),7(t)) + 0 (59)

We have that Cfitg (p,V,0) = 2|V|*> = 2. Since F is smooth, this second derivative is continuous, so we

can choose € small enough such that for ¢ < 2¢ within B(gq,e) C M we have & t2 > 0.

b

First we examine [d((t),p)]?>. Because we are in the same domain as above, we can create a geodesic
between any two points in B(p, €). The distance between any two points in B(p, €) has to be less than 2e,
and so we can have exp, (tV') be any point in B(p,¢) for any g1 € B(p,¢) with [V| = 1, depending on V.

Because we are in a totally normal neighborhood of p, exp is a diffeomorphism, and thus we can choose V'



such that |[V| = 1 and exp,(t2V) = g2 for some t2 < 2¢ (|t2V] is whatever length we need to get to go; we
are all good because [t2V] < |t2]|V] < 2¢). By uniqueness of geodesics, this map coincides with v from ¢
to go. Thus we can consider F(q1,V,t2) instead of [d(v(t), p)]>.

Since € is given as before, we are assured that F(q1,V,t) is concave up everywhere for 0 < ¢ < to. This
means there cannot be a ¢’ € (0,t2) where F(q1,V,t’) attains a maximum. If there where, F' would have
to be concave down at t', violating what we proved in a). Thus the maximum value of F is achieved at

the boundary, either at ¢t = 0 or t = to, i.e.

max[F (g1, V,t)] = max([d(exp,, (tV),p)]’] = max[[d(v(t), p)]’] (60)
= max[[d(7(0), p)]?, [d(v(t2), p)]’] (61)
= max|[[d(q1,p)]*, [d(q2,p)]*] (62)

where (13) is by the uniqueness of geodesics, (14) is due to part a), and (15) is by definition.
If a® > b2, a,b € R™C, then a > b. We know that distance nonnegative. Thus, since the maximum of
the distance squared is achieved at the endpoints of =, the maximum of the distance is achieved at the

endpoints of .

Suppose we have arbitrary qi1,q2 € B(p,¢), and the geodesic between the two. Since gi1,q2 € B(p, €),
d(q1,p) < € and d(qz2,p) < €. Since we proved in b) that the maximum distance between ~(t) and p is
attained on the endpoints of v(t), i.e. ¢1 or g2. Thus, d(v(t),p) < € for all ¢, since the maximum distance,
either d(q1,p) or d(gz,p), is still less than e. Thus «(t) is completely contained in B(q,€). Since g1, g2 were

arbitrary, this works for every ¢i, g2 € B(p, €), so B(p, €) is convex. O

Question 5. Give an example of a Riemannian manifold that is not complete, but so that every p and q
can be joined by a length-minimizing geodesic. Give an example of a Riemannian manifold for which any
two points p and q can be joined by a geodesic, but for which there exist two points pG§ which cannot be

joined by a length-minimizing geodesic.

Proof. The plane {(z,y) € R?;y > 0} with metric g11 = goo = y%,glg = g21 = 0 is not complete (consider

the sequence a, = (zo, %) Trivially the sequence’s limit point is (zo,0), 2o € R, which is not in the upper

half plane), and we know from Do Carmo p.g. 73 that, for each pair of points in the upper half-plane,
there is a length minimizing geodesic between the two.
As for a manifold where any points p and ¢ can be joined by a geodesic, but there exist p, § can cannot

be joined by a length-minimizing geodesic, consider a punctured sphere: M = S? — {0,0,1}. Any two

points in M can be joined by a great circle as shown in class. However, let p = (%, 0, @), q= (—%, 0, ?)

The length-minimizing geodesic would be the arc parametrized by v(t) = (cos(t3 + %),0,sin(t5 + %)),

but this passes through (0,0, 1). However, the arc parametrized by (cos(—t2* + %), 0,sin(—t3F + %)) is a

geodesic with p, § as endpoints. O



Question 6. Let (M, g) be a Riemannian manifold. Suppose that (M, g) is locally conformally flat. Show

that

x

Rij =
2
P

((9ilog p)* + (9;1og p)? Z (O log p)* — 87 log p — 9 p) (63)

where, for each p € U, kij(p) := K([],;,) is the sectional curvature of the 2-plane [[,; , C T, M spanned by

81' and Bj .

Proof. First we calculate the Christoffel symbols with this metric. We have

1
Iy = 2 Z 9" (Digin + 0591 — Digiy) (4
== Z *511@ L(p°551) + 05(p°01i) — Di(p°6ij)) (65)
=35 Z ?@k(éjﬂpaip + %0851 + 61:2p0;p + p° 061 — 6i52pdup — p° Dibij) (66)
.
1 1
=35 Z ﬁézk(éjl%aip + 01:2p0;p — 6i52p01p) (67
l
1 1 1
=> (=0wd;u(0:p) + ~0udui(95p) — ~8i;0u(91p)) (68)
l p p P
51 k1l 1
= &k p(8 p) + 6 (GJP) 050 ;(3”’) (69)
= §50i(log p) + 0505 (log p) — ;6" i (log p) (70)

Where (22) is via the definition of the metric, (23) is due to the definition of a derivation, (24) is due
to § being scalar-valued, (26) is splicing the deltas together, and (27) is using the axiom of a derivation.
Next we compute R;j;;. In keeping consistent with notation in Do Carmo, we will have X; := 9;. We

have

Rijij; = (R(Xi, X;) X3, X;) (71)
= Rl (72)
= Ri;ip°0u (73)
R”Zp (74)
= (Z Féiriz - Z FéiFZz + 3jFZ¢ - 3iF§¢)ﬂ2 (75)

l !

Calculating our Christoffel symbols, we have



I, = 6.9;log p+ 6.8; log p — Ay log p (76)

IV, = 6/09;1og p+ dilog p — 6;10; log p (77)
I = 5.9 logp+ 050 log p (78)
I, = 679 log p — 6419, log p (79)
I, = —9;logp (80)
I‘gl =0;logp (81)

Since now ¢, j are fixed and distinct. In sparing the grader many lines of boring computation, we shall

provide intermediate solutions:

D TLTY, =2(0:1ogp)* — > (Arlog p) (82)
] 1
D 1LY = —(9;log p)® + (9 log p)? (83)
]
and, trivially,
o,T7, = 78?- log p (84)
j 2
il = 07 log p (85)

Thus Riji; = (9ilog p)*>+(9; log p)® =", (01 log p)* — 97 log p—0; log p. Since k;; = ‘XRAL%‘% it remains
iNXj

to calculate the denominator.

X, A X512 = (VIXGPIXGE — g(Xa, X5)2)? (86)
= (PR - 0 (87)
_p (58)

Thus,

(9ilog p)* + (9;1og p)* — 32, (B log p)°* — 87 log p — 8 log p
0?

(89)

Rij =

O

Question 7. Let M = R™™ with the metric § = (dz')? + ... + (dz™)? — (dz"™)%.  Define M =
{(z',...,z", 2" ") € R" : (2"t1)2 — 327 (2%)? = 1} and suppose g is the induced metric. Show that

i=1

(M, g) has constant sectional curvature -1.

10



Proof. First we find out induced metric. We examine the tangent vectors of M. Consider the tangent vector
9; of R™™'. In visualizing the tangent vector, we see for the i*" tangent vector, we see a contribution from
the 9; vector and some contribution of the 9,41 vector. Thus we write this tangent vector as 0; + hi8n+1

for some h' € R. M is given by 3" (2")? — (2" ™")? 41 = 0, so we have

n

0= +h'0ns1)(D_(2")* = (") + 1) (90)
=2z' — 2h'z™ ! (91)
i '

So our tangent vectors are h' = 7. For i =1,2,...,n, these span the tangent vectors of M. Thus our

metric is ¢i; = g(9; + I,f%&nﬂ,aj + I,f%an“) =g(0; + sz%@nﬂ, 05 + sz%@nﬂ). Since g is diagonal,
wigd

this result is §;; — Gz

We now check that the g given above is Riemannian, because g is not Riemannian. Consider

n

Zv nHanH),va(aj + i Ont1) Zv V7 (855 — %) (93)
. Z _ % (94)
— V- —Exfg (95)

2
From Cauchy-Schwarz, we know that (x - V)2 < |z]2|[V|* < (2"T1)?|V|%. Thus, ((:n‘i)l) < |V?| with
equality if and only if V' = 0, so ¢ is in fact Riemannian.

Now we calculate curvature. We use Theorem 2.5 in Do Carmo:

K(z,y) — K(z,y) = (B(x,z), B(y,y)) — |B(z,y)” (96)

for orthonormal = and y. Let £ = 0; and y = 0.

For the metric g;; = d;;, we see that, since the metric is constant valued, all Christoffel symbols
associated with g are 0, so K(x,y) = 0. By definition, B(z,y) = V#y — V.y. Since we are subtracting
the tangent vector V,y from V=7, we are left with the projection of V=% onto some normal vector N:
B(z,y) = W“’ N>N To find N, we demand g((z', ..., 2", %),N) = 0, where the first argument is

n+1)

our tangent vector from above. If we plug in N = (:cl, LLxtx , we get this inner product equal to

S (a)? — 2" ELEDY 0 We also see that (N, N) = -7 (27)? — (z"1)? = —1. Now we have

Tantl

11



<vffv N> vﬂ?? N> <ny7 N>

( 2
= — N
K(ay) = (S v SR - |l (97)
<E7 va> <g7 ﬁ§N> <g7 65N> 2
= - N
( R N, INE )= NN | (98)
(99)
Due to compatibility of the metric. Also, we notice that VN = T %J;f 0; =%'0; =T, so we now have
Ke,y) = (BT G0 ) 0 (100)
=(=N,—-N)-0 (101)
= (=1)*(N, N) (102)
S (103)
because 7,y are orthonormal. O
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