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1 Definitions
1.1 First Definition
This is the introduction of Dijkgraaf-Witten topological quantum field theory given
by Dijkgraaf andWitten: For a group Γ, the classifying space 𝐵Γ is the base space
of the universal principal Γ−bundle 𝐸Γ. Any principal Γ−bundle 𝐸 over a mani-
fold 𝑀 allows a bundle map into the universal bundle 𝐸Γ. This induces a bundle
map 𝛾 ∶ 𝑀 → 𝐵Γ. The topology of 𝐸 is completely determined by the homotopy
type of 𝛾 , so there is a bijective correspondence between 𝑀𝑎𝑝(𝑀, 𝐵Γ) and prin-
cipal Γ−bundles 𝐸 → 𝑀 .

We care about principal Γ−bundles over 𝑀 because the Γ action on the bundle
encodes the (global) gauge transformation, and connections on said bundle (gauge
fields) show how fields change through spacetime. They allow for derivatives that
are invariant under Γ as well (because in general 𝜕𝜇(𝑔𝜙) ≠ 𝑔𝜕𝜇(𝜙), 𝑔 ∈ Γ, but
with a gauge field 𝐷𝜇(𝑔𝜙) = 𝑔𝐷𝜇(𝜙)).

The path integral is

𝑍(𝑀) = ∫ 𝒟𝐴𝑒2𝜋𝑖𝑆(𝐴)

with 𝐴 a connection on a principal Γ−bundle. For this reason (and a couplemore) a
topological action 𝑆(𝜌) should be a value in ℝ/ℤ. For Γ a finite group, every prin-
cipal Γ−bundle has a unique flat connection corresponding to a homomorphism
𝜌 ∶ 𝜋1(𝑀) → Γ. The actions should also be equivalent if they differ by a func-
tional that only depends on the 𝜌𝜕𝑀 , because then the transition amplitudes (𝑒𝑖𝑆)
could correspond to a change in definition of the external states. Also, if 𝜕𝑀 = ∅
and there exists a manifold 𝐵 such that 𝜕𝐵 = 𝑀 such that 𝜌 extends to a homo-
morphism 𝜋1(𝐵) → Γ, then 𝑆(𝜌) = 0, i.e. if 𝑀 = 𝑀1#𝑀2, 𝜕𝐵 = 𝑀 ⊔−𝑀1 ⊔𝑀2,
and 𝑒𝑖𝑆(𝑀) = 𝑒𝑖𝑆(𝑀1)𝑒𝑖𝑆(𝑀2). With these two requirements, the action functionals
are then in bijective correspondence with 𝐻𝑛(𝐵Γ; ℝ/ℤ).

With the exact sequence

0 → ℤ → ℝ → ℝ/ℤ → 0

This induces an isomorphism

𝐻𝑘(𝐵Γ; ℤ) ≅ 𝐻𝑘−1(𝐵Γ; ℝ/ℤ)
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For a trivial principal Γ−bundle 𝐸 → 𝑀3 with connection 𝐴 and Γ a compact
simple gauge group, the Chern-Simons action functional is

𝑆(𝐴) = 𝑘
8𝜋2 ∫𝑀

𝑇 𝑟(𝐴 ∧ 𝑑𝐴 + 2
3𝐴 ∧ 𝐴 ∧ 𝐴)

where 𝑘 ∈ ℤ ensures the integral is single valued, and 𝑇 𝑟 is an invariant quadratic
form on the lie algebra of Γ. From cobordism theory we know that there exists
a 4-manifold 𝐵4 such that 𝜕𝐵 = 𝑀 . Extending the trivial bundle 𝐸, and letting
𝐹 be the curvature of any gauge field 𝐴′ on 𝐵 reducing to 𝐴 on 𝜕𝐵 = 𝑀 , this
functional becomes

𝑆(𝐴) = 𝑘
8𝜋2 ∫𝐵

𝑇 𝑟(𝐹 ∧ 𝐹 ) mod 1

This is the integral of the differental form

Ω(𝐹 ) = 𝑘
8𝜋2 𝑇 𝑟(𝐹 ∧ 𝐹 ) ∈ 𝐻4(𝐵Γ; ℝ)

Since this differential form has integral periods, it is in the image of the natural
map 𝐻4(𝐵Γ; ℤ) → 𝐻4(𝐵Γ; ℝ).

Choose any 𝜔 ∈ 𝐻4(𝐵Γ; ℤ) representing Ω(𝐹 ) ∈ 𝐻4(𝐵Γ; ℝ). Then the
topological action becomes

𝑆(𝐴) = 1
𝑛[∫𝐵

Ω(𝐹 ) − ⟨𝛾∗𝜔, 𝐵⟩] mod 1

If we transform 𝜔 into 𝜔 + 𝜔′, where 𝜔′ is an 𝑛−torsion element, the action picks
up a ℤ𝑛 phase. If Ω(𝐹 ) = 0 as is the case for Γ finite, then 𝜔 is torsion and deter-
mines a cocycle 𝛼 ∈ 𝐻3(𝐵Γ; ℝ, /ℤ) through the isomorphism 𝑇 𝑜𝑟(𝐻4(𝐵Γ; ℤ)) ≅
𝐻3(𝐵Γ; ℝ/ℤ). Then the action becomes

𝑆 = ⟨𝛾∗𝛼, [𝑀]⟩

For gauge invariance, let 𝐴 be a connection and 𝐴𝑔 be its gauge transform. We
can construct a connection 𝐴𝑡 such that 𝐴0 = 𝐴, 𝐴1 = 𝐴𝑔 on the manifold 𝑀 × 𝐼 .
Thus we have

𝑆(𝐴) − 𝑆(𝐴𝑔) = ∫𝑀×𝐼
Ω(𝐹 )
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1.2 Second Definition
A (𝑛 + 1)-dimensional DW theory based on a finite group Γ is defined by the
following. Choose a cocycle 𝑤 ∈ 𝐶𝑛+1(𝐵Γ). For 𝑀 a closed 𝑛-manifold, we
define the vector space

𝔸(𝑀) = ℂ[maps(𝑀 → 𝐵Γ)]/ ∼
where maps(𝑀 → 𝐵Γ) denotes the set of continuous maps from 𝑀 to 𝐵Γ. The
equivalence relation is the following: given a map 𝐹 ∶ 𝑀 ×𝐼 → 𝐵Γ, and defining
𝑓𝑡 ∶ 𝑀 → 𝐵Γ as the restriction to 𝑀 × {𝑡}, we have 𝑓1 ∼ ⟨𝑤, [𝐹 (𝑀 × 𝐼)]⟩𝑓0.
For 𝑤 = 0 this is just homotopy equivalence, if not this is a twisted version of
homotopy. For the latter case we have to be careful to ensure everything is well-
defined. 𝔸(𝑀) is the predual to the Hilbert space: define

𝑍(𝑀) = 𝔸(𝑀)∗ = {linear maps(𝔸(𝑀) → ℂ)}
More generally, as is traditional in TQFT, we consider a similar space for man-

ifolds with boundary, such that the assignment to the boundary is fixed: For 𝑀
a compact manifold, and fixed ”crude” boundary condition map 𝑐 ∶ 𝜕𝑀 → 𝐵Γ,
define the vector space

𝔸(𝑀; 𝑐) = ℂ[maps(𝑀 → 𝐵Γ)∗
𝑐 ]/ ∼

where maps(𝑀 → 𝐵Γ)∗
𝑐 is the set of maps 𝑀 → 𝐵Γ which restrict to 𝑐 on 𝜕𝑀 ,

and the quotient is the same. In the same way, we have

𝑍(𝑀; 𝑐) = 𝔸(𝑀; 𝑐)∗

Let 𝑌 be a closed (𝑛 − 1)-manifold. In this theory, we associate a 1-category
to such a manifold.

Let 𝒜(𝑌 ) be the 1-category with:

• Objects = all continuous maps 𝑓 ∶ 𝑌 → 𝐵Γ (NOT up to homotopy)

• Morphisms = the vector space 𝔸(𝑌 × 𝐼; 𝑥, 𝑦), where 𝑥, 𝑦 are the boundary
components of the “cylinder”

• Compositions are the stacking of cylinders

Said in a more calculation-friendly way, 𝒜(𝑌 ) is the 1-category with:
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• Ob: {𝛼 ∶ 𝜋1(𝑌 ) → Γ}

• Mor (𝛼 → 𝛽): ℂ[𝜌 ∶ 𝜋≤1(𝑌 × 𝐼)|𝜌|𝜋1(𝑌 ×{0}) = 𝛼, 𝜌|𝜋1(𝑌 ×{1}) = 𝛽]

• Stacking: Stack the 𝐼s

The minimal idempotents of this category are given by pairs {𝛼, 𝜎}, where 𝛼
is a homomorphism 𝜋1(𝑌 ) → Γ, and 𝜎 is a representation of 𝑍(𝛼), the centralizer
of the image of 𝛼.

If we take any representation 𝑉 or 𝒜(𝑌 ), we have

𝑉 ≅ ⊕𝑒=min idem𝑉𝑒

For disjoint unions, we have

𝔸(𝑀𝑛 ⊔ 𝑁𝑛) ≅ 𝔸(𝑀𝑛) ⊗ 𝔸(𝑁𝑛)
𝒜(𝑋𝑘 ⊔ 𝑌 𝑘) ≅ 𝒜(𝑋𝑘) × 𝒜(𝑌 𝑘), 𝑘 < 𝑛

Example 1. For 𝑛 = 1, 𝑤 = 0, we consider 𝔸(𝑆1). These are unbased maps.
Two circles are freely homotopic if their corresponding Γ elements are conjugate,
so dim(𝔸(𝑆1)) = |Γ/ ∼ |, where ∼ is conjugacy equivalence.

Example 2. For 𝑛 = 1, 𝑤 = 0, we consider 𝔸(𝐼; 𝑥, 𝑦). This is a vector space of
dimension the number of homotopy classes of paths from 𝑥 to 𝑦. If we fix a path
from 𝑦 to 𝑥 and compose this will all such paths, this becomes |𝜋1(𝐵Γ, 𝑥)| ≅ Γ.

Example 3. For 𝑛 = 1, 𝑤 = 0, 𝒜(𝑝𝑡) = {𝑝𝑡 → 𝐵Γ} ≅ 𝐵Γ. The morphisms
in this 1-category are 𝔸(𝐼; 𝑎, 𝑏) for two fixed points 𝑎, 𝑏 ∈ 𝐵Γ. These satisfy the
property that 𝔸(𝐼; 𝑎, 𝑏) ⊗ 𝔸(𝐼; 𝑏, 𝑐) → 𝔸(𝐼; 𝑎, 𝑐)

Example 4. For 𝑛 = 0, 𝑤 = 0, how many equivalence classes are there of objects
in 𝒜(𝑝𝑡)? In category theory, two abjects 𝑐, 𝑑 are considered equivalent if there
exist morphisms 𝑢 ∶ 𝑐 → 𝑑, 𝑣 ∶ 𝑑 → 𝑐 such that 𝑢𝑣 = 𝑖𝑑𝑐 , 𝑣𝑢 = 𝑖𝑑𝑑 . Since
𝜋0(𝐵Γ) ≅ 0, there is one equivalence class between objects.

Example 5. For 𝑛 = 2, 𝑤 = 0, we’ll describe the (equivalence classes) of objects
in 𝒜(𝑆1). From above we know that the set of equivalence classes of objects has a
bijection between conjugacy classes of Γ. This means that the only objects we can
consider are basepoint-preserving maps 𝑆1 → 𝐵Γ. These correspond to elements
𝑔 ∈ Γ. The morphisms are the vector space 𝔸(𝑆1 × 𝐼; 𝑔, 𝑔′). Thus we want to
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consider maps from 𝑆1 ×𝐼 into 𝐵Γ. If we trace the basepoints from 𝑔 to 𝑔′, we get
another loop in 𝐵Γ under the map 𝑆1 × 𝐼 into 𝐵Γ, represented by an element in Γ
we’ll call ℎ. But how do we know which ℎ works? If we cut the cylinder along ℎ,
we get a 2-cell, and we want the boundary of this 2-cell to be nullhomotopic, i.e.
ℎ𝑔′ℎ−1𝑔−1 = 1 ∈ Γ. Thus

𝑚𝑜𝑟([𝑔] → [𝑔′]) = ℂ[{ℎ ∈ Γ|𝑔 = ℎ𝑔′ℎ−1}]
𝐸𝑛𝑑([𝑔]) = ℂ[𝑁𝑔] ∶= ℂ[{ℎ|𝑔 = ℎ𝑔ℎ−1}]

or 𝑔ℎ = ℎ𝑔.

1.3 𝑛 = 2, Γ = 𝑆3 Example
First, let’s see what happens whenwe consider 𝑆1. Since 𝑛 = 2, we have a category
𝒜(𝑆1). How many equivalence classes of objects are there in this category? From
before we know that the set of equivalence classes are in bijective correspondence
with the conjugacy classes of 𝑆3. We give a presentation of 𝑆3 as

𝑆3 = ⟨𝑟, 𝑎|𝑎3 = 1, 𝑟2 = 1, 𝑟𝑎𝑟 = 𝑎2⟩

𝑎:

1 𝑎
𝑎 𝑎
𝑟 𝑎2

𝑎2 𝑎
𝑎𝑟 𝑎2

𝑎2𝑟 𝑎2

𝑟:

1 𝑟
𝑎 𝑎2𝑟
𝑟 𝑟

𝑎2 𝑎𝑟
𝑎𝑟 𝑎2𝑟
𝑎2𝑟 𝑎𝑟

𝑎2:

1 𝑎2

𝑎 𝑎2

𝑟 𝑎
𝑎2 𝑎2

𝑎𝑟 𝑎
𝑎2𝑟 𝑎

𝑎𝑟:

1 𝑎𝑟
𝑎 𝑟
𝑟 𝑎2𝑟

𝑎2 𝑎2𝑟
𝑎𝑟 𝑎𝑟
𝑎2𝑟 𝑟

𝑎2𝑟:

1 𝑎2𝑟
𝑎 𝑎𝑟
𝑟 𝑎𝑟

𝑎2 𝑟
𝑎𝑟 𝑟
𝑎2𝑟 𝑎2𝑟

The conjugacy classes of 𝑆3 are

{𝐼𝑑}, {𝑟, 𝑎𝑟, 𝑎2𝑟}, {𝑎, 𝑎2}

thus there are 3 equivalence classes of objects in 𝒜(𝑆1). Now we examine the
endomorphism algebra of an object in each equivalence class. From above, the
dimension is the number of elements of 𝑆3 that commute with each group rep-
resenting the object. The representative object of each equivalence is of order 1,
2, and 3, respectively. For 𝑑𝑖𝑚(𝐸𝑛𝑑(1)), we have 6 elements commuting with
1, for 𝑑𝑖𝑚(𝐸𝑛𝑑(𝑟, 𝑎𝑟, 𝑎2𝑟)), we have 2 elements commuting with each one, and
𝑑𝑖𝑚(𝐸𝑛𝑑(𝑎, 𝑎2)), we have 3 elements commuting with each one.
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We then examine 𝔸(𝑇 2). This is 𝔸(𝑆1 ×𝐼; 𝑔, 𝑔), ∀𝑔 ∈ 𝑆3. For 𝑔 = 𝐼𝑑, all ele-
ments commute, and so there are 3 homotopy classes of loops (for the 3 conjugacy
classes that all the elements fall under). For an element in the {𝑟, 𝑎𝑟, 𝑎2𝑟} conju-
gacy class, there are 2 commuting elements. For an element in the {𝑎, 𝑎2} conju-
gacy class, there are 3 commuting elements. Thus 𝑑𝑖𝑚(𝔸(𝑇 2)) = 3 + 2 + 3 = 8.

For objects (𝑔, ℎ), 𝑔, ℎ ∈ 𝑆3 up to conjugacy, we have the following list:

⟨1, 1⟩, ⟨1, 𝑎⟩, ⟨1, 𝑟⟩, ⟨𝑎, 1⟩, ⟨𝑎, 𝑎⟩, ⟨𝑎, 𝑟⟩, ⟨𝑎, 𝑎2⟩, ⟨𝑟, 1⟩, ⟨𝑟, 𝑎⟩, ⟨𝑟, 𝑟⟩, ⟨𝑟, 𝑎𝑟⟩

Now let 𝑀3 be a 3-manifold such that 𝜕𝑀3 ≠ ∅. Denote

𝑅 ∶= {𝜋1(𝑀3) → Γ}
𝑅𝛼 ∶= {𝜋1(𝑀3) → Γ, restr. to 𝜕𝑀3 = 𝛼}

𝑍(𝛼) acts on 𝑅𝛼, and 𝑍(𝛼) acts on ℂ[𝑅𝛼]. Our goal is to write ℂ[𝑅𝛼] as a direct
sum of “isotypical” components. The orbits are:

• {𝑥}, so ℂ[𝑅𝛼] = ℂ𝑡𝑟𝑖𝑣

• {𝑥, 𝑦 ≠ 𝑥}

𝑋 𝑌
𝑟

𝑎
𝑟

𝑎

so ℂ[𝑅𝛼] = ℂ𝑡𝑟𝑖𝑣 ⊕ ℂ𝑠𝑖𝑔𝑛

• {𝑥, 𝑦, 𝑧}

𝑋 𝑌

𝑍

𝑎

𝑟 𝑎 𝑟𝑎

𝑟

so ℂ[𝑅𝛼] = ℂ𝑡𝑟𝑖𝑣 ⊕ ℂ2
𝑠𝑡𝑑 , since we know the dimension has to be 3.

• If the size of the center is 6, Γ acts on itself by left multiplication, so we have
the “regular representation” ℂ𝑡𝑟𝑖𝑣 ⊕ ℂ2

𝑠𝑡𝑑 ⊕ ℂ2
𝑠𝑡𝑑 ⊕ ℂ𝑠𝑖𝑔𝑛
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1.4 Particle Types
A “crude” boundary condition on 𝑌 is a map 𝑓 ∶ 𝑌 → 𝐵Γ (NOT up to homotopy),
or equivalently a homomorphism 𝜌 ∶ 𝜋1(𝑌 ) → Γ. An endomorphism of our
“crude” boundary condition is a map 𝐹 ∶ 𝑌 × 𝐼 → 𝐵Γ such that 𝐹 (𝑦, 0) =
𝐹 (𝑦, 1) = 𝑓(𝑦), or 𝑥 ∈ 𝑍(𝑖𝑚(𝜌)), where 𝑍 is denoted as the centralizer of this
image subgroup.

A non-“crude” boundary condition represents a particle type on 𝑌 (aka irreps
or idempotents of 𝑌 ), and is given by pairs

[𝜌 ∶ 𝜋1(𝑌 ) → Γ, 𝛼 ∈ 𝑖𝑟𝑟𝑒𝑝(𝑍(𝑖𝑚(𝜌)))]/𝑐𝑜𝑛𝑗

where we mod out by conjugation via the observation in Example 1.
Let 𝑀 be a connected 𝑛−manifold such that 𝜕𝑀 = 𝑌1 ⊔ ... ⊔ 𝑌𝑘. Fix crude

boundary conditions 𝜌𝑖 ∶ 𝜋1(𝑌𝑖) → Γ. The Hilbert space is given by

𝔸(𝑀; 𝜌1, ..., 𝜌𝑘) ∶= ℂ[{𝛼 ∶ 𝜋𝑚
1 (𝑀) → Γ|𝛼𝜋1(𝑌𝑖) = 𝜌𝑖, ∀1 ≤ 𝑖 ≤ 𝑘}]

where 𝜋𝑚
1 (𝑀) is the fundamental groupoid of 𝑀 with fixed basepoints in each

𝑌𝑖. Notice that the number of objects in a garden variety fundamental groupoid
is uncountable, but with fixed basepoints in each boundary submanifold becomes
finite, and so this Hilbert space is finite.
Example 6. Let 𝑛 = 2, 𝑀 = 𝑆1 × 𝐼, 𝜌1 = 𝜌2 = the trivial homomorphism. Then
𝔸(𝑆1 × 𝐼, 𝑡𝑟𝑖𝑣, 𝑡𝑟𝑖𝑣) ≅ ℂΓ.

Example 7. Let 𝑛 = 3, 𝑀 = 𝑆3\[𝐵3 ⊔ 𝐵3 ⊔ 𝐵3], 𝜌𝑖 = 𝑡𝑟𝑖𝑣. Notice that 𝑌𝑖 = 𝑆2,
so 𝜋1(𝑌𝑖) = 1. Then 𝔸(𝑀; 𝑡𝑟𝑖𝑣, 𝑡𝑟𝑖𝑣, 𝑡𝑟𝑖𝑣) ≅ ℂ[Γ × Γ]. See 1.

If 𝜕𝑀 = ∅, thenwemod out by conjugation: 𝔸(𝑀) = ℂ[{𝜋1(𝑀) → Γ}/𝑐𝑜𝑛𝑗].
The group 𝑍(𝑖𝑚(𝜌1))× ...×𝑍(𝑖𝑚(𝜌𝑘)) acts on 𝔸(𝑀; 𝜌1, ..., 𝜌𝑘) via conjugation

(Note that we need to be careful about conjugation in the groupoid picture).

𝔸(𝑀; 𝜌1, ..., 𝜌𝑘) ≅ ⊕𝛽1,...,𝛽𝑘𝔸(𝑀; (𝜌1, 𝛽1), ..., (𝜌𝑘, 𝛽𝑘))

where 𝛽𝑖 is an irrep of 𝑍(𝑖𝑚(𝜌𝑖)). The right side of the equation is the Hilbert space
of particle types (𝜌1, 𝛽1), ..., (𝜌𝑘, 𝛽𝑘).

To help with checking calculations, we can use this standard fact of TQFT:

𝑑𝑖𝑚(𝔸(𝑌 × 𝑆1)) = # irreps of 𝒜(𝑌 )

Suppose 𝜕𝑀3 = 𝑌0 ⊔ 𝑆2, then we fix points 𝑏0 ∈ 𝑌0 and 𝑏1 ∈ 𝑌1.

8



𝑔1
𝑔2

Figure 1: Three (𝑡𝑟𝑖𝑣, 𝑡𝑟𝑖𝑣) particles on the 3-sphere.

⋅𝑏0 ⋅𝑏1𝑚 𝑎

With this subcategory of the fundamental groupoid, we have an isomorphism of
sets

{𝜌 ∶ 𝜋0,1 → Γ} ≅𝑠𝑒𝑡 {𝜌 ∶ 𝜋1 → Γ} × Γ
𝜌 ↦ 𝜌|𝐸𝑛𝑑(𝑏0) × 𝜌(𝑎)

1.5 Extended TQFTs
When we have particles, we’d want to examine their statistics. In 2D TQFTs, the
particles are points in the disc, and their motion groups are braid groups. The
natural generalization for statistics of extended objects in higher dimensions are
motions groups of links in 𝑆3. Representations of these groups are used to model
statistics of extended objects, e.g. closed strings.

Schwarz-typeTQFTs are theories where the action functional ismetric-independent,
e.g. Chern-Simons theory.

Atiyah-type TQFTs are functors from the bordism category of manifolds to

9



the category of finite-dimensional vector spaces with morphisms linear maps:

𝑍 ∶ Bord𝑛+1 → Vec

satisfying functoriality:

1. 𝑍(𝑋) = 𝑍(𝑋′) ∶ 𝑉 (𝑌−) → 𝑉 (𝑌+) if 𝑋, 𝑋′ are equivalent cobordisms

2. 𝑍(𝑌 × 𝐼) = 𝐼𝑑𝑉 (𝑌 )

3. 𝑍(𝑋2 ∪ 𝑋1) = 𝑍(𝑋2) ⋅ 𝑍(𝑋1)

and monoidality:

1. 𝑉 (∅) ≅ ℂ

2. 𝑉 (𝑌1 ⊔ 𝑌2) ≅ 𝑉 (𝑌1) ⊗ 𝑉 (𝑌2) with

𝑉 ((𝑌1 ⊔ 𝑌2) ⊔ 𝑌3) (𝑉 (𝑌1) ⊗ 𝑉 (𝑌2)) ⊗ 𝑉 (𝑌3)

𝑉 (𝑌1 ⊔ (𝑌2 ⊔ 𝑌3)) 𝑉 (𝑌1) ⊗ (𝑉 (𝑌2) ⊗ 𝑉 (𝑌3))

≅

≅

3. Unions with the empty set:

𝑉 (∅ ⊔ 𝑌 ) ℂ ⊗ 𝑉 (𝑌 )

𝑉 (𝑌 ) 𝑉 (𝑌 )

≅

=

4. Symmetry: 𝑉 (𝑌1 ⊔ 𝑌2) ≅ 𝑉 (𝑌1) ⊗ 𝑉 (𝑌2) → 𝑉 (𝑌2) ⊗ 𝑉 (𝑌1) ≅ 𝑉 (𝑌2 ⊔ 𝑌2)

where the isomorphisms are canonical.
Atiyah-type TQFTs don’t necessarily lead to representations of motion groups.

For this we need extended TQFTs.
A k-extended (n+1)-TQFT (also denoted (n+1,-k)-TQFT) is a TQFT ex-

tended from (𝑛 + 1)−manifolds all the way back to (𝑛 − 𝑘)−manifolds.
Our definition of aDikgraaf-Witten TQFT is a 1-extended TQFT.A 1-extended

(n+1)−TQFT is a projectively symmetric monoidal functor from the category
𝐵𝑜𝑟𝑑𝑛+1

𝑛 to 𝑉 𝑒𝑐, the category of finite-dimensional complex vector spaces. This
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is so far a projective Atiyah-type TQFT, but we assign a semisimple category 𝒞 (Σ)
to each oriented closed (𝑛 − 1)−manifold Σ and a finite-dimensional vector space
𝑉 (𝑌 ; {𝑋𝑙}) to each oriented 𝑛−manifold 𝑌 with parametrized and labeled bound-
ary components by 𝑋𝑙 ∈ ∏𝒞 (𝜕𝑌 ) (where ∏𝒞 is a complete set of simple rep-
resentatives of the category 𝒞 ) subject to the usual empty set axiom, disc axiom,
tube axiom, disjoint union axiom, duality axioms, and gluing axioms:

1. (Empty manifold axiom) 𝑉 (∅) = 1, ℂ, or 𝑉 𝑒𝑐 if ∅ is a manifold of dimen-
sion 𝑛 + 1, 𝑛, or 𝑛 − 1, respectively.

2. (Disc axiom) 𝑉 (𝐷𝑛; 𝑋) ≅ ℂ if 𝑋 = 1 (the tensor unit), and 0 otherwise.

3. (Tube axiom) 𝑉 (𝑆𝑛−1 × 𝐼; 𝑋𝑖, 𝑋𝑗) ≅ ℂ if 𝑋𝑖 ≅ 𝑋∗
𝑗 , and 0 otherwise, where

the isomorphisms are isomorphisms as vector spaces and functorial isomor-
phisms. (See Frobenius-Schur indicators of labels)

4. (Disjoint union axiom) 𝑉 (𝑌1 ⊔ 𝑌2; 𝑋𝑙1 ⊔ 𝑋𝑙2) ≅ 𝑉 (𝑌1; 𝑋𝑙1) ⊗ 𝑉 (𝑌2; 𝑋𝑙2),
associatively and compatible with mapping class group projective actions.

5. (Duality axiom 1) 𝑉 (−𝑌 ; 𝑋𝑙) ≅ 𝑉 (𝑌 ; 𝑋𝑙)∗

6. (Duality axiom 2) The isomorphisms 𝑉 (𝑌 ) → 𝑉 (−𝑌 )∗, 𝑉 (−𝑌 ) → 𝑉 (𝑌 )∗

are mutually adjoint.

7. (Duality axiom 3) Given 𝑓 ∶ (𝑌1; 𝑋𝑙1) → (𝑌2; 𝑋𝑙2), let 𝑓 ∶ (−𝑌1; 𝑋∗
𝑙1

) →
(−𝑌2; 𝑋∗

𝑙2
) be the induced map. Then ⟨𝑥, 𝑦⟩ = ⟨𝑉 (𝑓)𝑥, 𝑉 (𝑓)𝑦⟩, with 𝑥 ∈

𝑉 (𝑌1; 𝑋𝑙1), 𝑦 ∈ 𝑉 (𝑌2; 𝑋𝑙2).

8. (Duality axiom 4) ⟨𝑥1 ⊗ 𝑥2, 𝑦1 ⊗ 𝑦2⟩ = ⟨𝑥1, 𝑦1⟩⟨𝑥2, 𝑦2⟩, for 𝑥1 ⊗ 𝑥2 ∈
𝑉 (𝑌1 ⊔ 𝑌2), 𝑦1 ⊗ 𝑦2 ∈ 𝑉 (−𝑌1 ⊔ −𝑌2)

9. (Gluing axiom) If 𝑌𝑔𝑙 is the manifold resulting from gluing two boundary
components Σ of a manifold 𝑌 , then 𝑉 (𝑌𝑔𝑙) ≅ ⊕𝑋𝑖∈∏𝒞 (Σ)𝑉 (𝑌 ; (𝑋𝑖, 𝑋∗

𝑖 )).
This isomorphism is associative and compatible with mapping class group
actions. Moreover, there exist nonzero numbers 𝑠𝑗 , 𝑗 ∈ ∏𝒞 such that
⟨⊕𝑗∈∏𝒞

𝑥𝑗 , ⊕𝑗∈∏𝒞
𝑦𝑗⟩ = ∑𝑗∈∏𝒞

𝑠𝑗⟨𝑥𝑗 , 𝑦𝑗⟩
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2 Cutting and Gluing
For DW theory to be a self-respecting topological quantum field theory, it has to
be local. For 𝑛 = 0, 𝑤 = 0, let 𝑌 be such that 𝑌 = 𝑌1#𝑌2, where 𝜕𝑌1,2 = 𝑆1.
What we want is to be able to write 𝔸(𝑌 ) in terms of 𝔸(𝑌1) and 𝔸(𝑌2). These new
manifolds have boundary 𝑆1 that must agree when mapped to 𝐵Γ. Where this 𝑆1

must map to on 𝐵Γ yields different elements of 𝔸(𝑌 ). Thus we have

𝔸(𝑌 ) ∶= ⊕𝑐𝔸(𝑌1; 𝑐) ⊗ 𝔸(𝑌2; 𝑐)/ ∼
𝛼𝑒 ⊗ 𝛽 ∼ 𝛼 ⊗ 𝑒𝛽

for all 𝛼 ∈ 𝔸(𝑌1; 𝑐), 𝛽 ∈ 𝔸(𝑌2; 𝑑), and 𝑒 a morphism from 𝑐 to 𝑑. This means
topologically that, if we have 𝑌1 with boundary 𝑐 and 𝑌2 with boundary 𝑑, it doesn’t
matter whether we glue a cylinder from 𝑐 to 𝑑 to 𝑌1 or 𝑌2. 𝑌1 glued with the
cylinder and 𝑌2 mapped to 𝐵Γ is homotopically the same as 𝑌1 and 𝑌2 glued with
the cylinder, so they ought to be the same algebraically. This is in fact the only
quotient relationship we need.

More generally, let 𝑌 be a compact manifold with boundary given by 𝜕𝑌 =
𝑆+ ⊔ 𝑆− ⊔ 𝑆0, where 𝑆+ = −𝑆−. Let 𝑌𝑔𝑙 denote the manifold obtained by gluing

𝑆+ to 𝑆− in 𝑌 . We want a gluing map from 𝔸(𝑌 ; 𝑎, 𝑏, 𝑐) 𝑔𝑙−→ 𝔸(𝑌𝑔𝑙; 𝑐) for various
𝑎 and 𝑏. It is easy to see topologically that the gluing map

𝑔𝑙 ∶ ⊕𝑥∈𝔸(𝑆±)𝔸(𝑌 ; 𝑥, 𝑥, 𝑐) → 𝔸(𝑌𝑔𝑙; 𝑐)

is surjective via isotopy. See figure 2.
Nowwe want to describe the kernel of this map. Let 𝑒 ∈ 𝔸(𝑆± ×𝐼; 𝑎, 𝑏). Since

𝑔𝑙𝑏(𝑌 ∪𝑆+ 𝑒) ∼ 𝑔𝑙𝑎(𝑌 ∪𝑆− 𝑒) in 𝑌𝑔𝑙, we have

(𝑌 ∪𝑆+ 𝑒) − (𝑌 ∪𝑆− 𝑒) ∈ ker(𝑔𝑙) ⊂ ⊕𝑥∈𝑆±𝔸(𝑌 ; 𝑥, 𝑥, 𝑐)

We claim that (𝑌 ∪𝑆+ 𝑒) − (𝑌 ∪𝑆− 𝑒) generates all of ker(𝑔𝑙). This is known as the
Gluing theorem:

Theorem 1. Let 𝑌 be a manifold such that 𝜕𝑌 = 𝑆+ ⊔ 𝑆− ⊔ 𝑆0 with 𝑆+ = −𝑆−,
and let 𝑌𝑔𝑙 be the manifold obtained from gluing 𝑆+ to 𝑆−. Note that 𝜕𝑌𝑔𝑙 = 𝑆0.
Let 𝐶 ∈ 𝑀𝑎𝑝𝑠(𝑌 → 𝐵Γ; 𝑎, 𝑏, 𝑐) and 𝑒 ∈ 𝑀𝑎𝑝𝑠(𝑆± × 𝐼 → 𝐵Γ; 𝑎, 𝑏) for some
𝑎, 𝑏 ∈ 𝑀𝑎𝑝𝑠(𝑆± → 𝐵Γ). Let 𝐿 ⊂ ⊕𝑥𝔸(𝑌 ; 𝑥, 𝑥, 𝑐) be the subspace generated by
all elements of the form 𝐶𝑒 − 𝑒𝐶 . Then there is a natural isomorphism

𝔸(𝑌𝑔𝑙; 𝑐) ≅ ⊕𝑥𝔸(𝑌 ; 𝑥, 𝑥, 𝑐)/𝐿
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𝔸(𝑌 ; 𝑎, 𝑎, 𝑐) 𝔸(𝑌 ; 𝑏, 𝑏, 𝑐)

𝑎 𝑎𝑎 𝑏𝑏 𝑏

𝑐 𝑐

𝑐

𝔸(𝑌𝑔𝑙; 𝑐)

Figure 2: Gluing annuli

2.1 Tube Category
The gluing theorem can be usefully restated in terms of actions on a tube category
(also called cylinder category). For a manifold 𝑆, this category’s objects are maps
𝑆 → 𝐵Γ and its morphisms are 𝔸(𝑆 × 𝐼; 𝑎, 𝑏). Composition is given by gluing
tubes. We restate the gluing theorem in these terms:

Theorem 2. Let 𝑊 be a vector space and linear maps 𝑓𝑎 ∶ 𝔸(𝑌 ; 𝑎, 𝑎, 𝑐) for all
𝑥 ∈ 𝔸(𝑌 ; 𝑎, 𝑎, 𝑐), such that for all 𝑒 ∶ 𝑥 → 𝑦, the following diagram commutes:

𝔸(𝑌 ; 𝑎, 𝑎, 𝑐)

𝔸(𝑌 ; 𝑎, 𝑏, 𝑐) 𝑊

𝔸(𝑌 ; 𝑏, 𝑏, 𝑐)

𝑓𝑎

𝑒×𝐼𝑑𝑏

𝐼𝑑𝑎×𝑒

𝑓𝑏

then there exists a map 𝑔 ∶ 𝔸(𝑌𝑔𝑙; 𝑐) → 𝑊 such that 𝑓𝑎 = 𝑔 ⋅ 𝑔𝑙𝑎 for all 𝑥.
This rephrasing makes it easy to generalize to different target categories.
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3 Algebra prerequisites
3.1 Modules and algebras
Herewe recall the definition of an algebra. For 𝑅 a ringwithmultiplicative identity
1𝑅, a left𝑅-module is an abelian group (𝑀, +) with an operation ⋅ ∶ 𝑅×𝑀 → 𝑀 ,
such that, for all 𝑟, 𝑠 ∈ 𝑅 and 𝑥, 𝑦 ∈ 𝑀 ,

𝑟 ⋅ (𝑥 + 𝑦) = 𝑟 ⋅ 𝑥 + 𝑟 ⋅ 𝑦
(𝑟 + 𝑠) ⋅ 𝑥 = 𝑟 ⋅ 𝑥 + 𝑠 ⋅ 𝑦

(𝑟𝑠) ⋅ 𝑥 = 𝑟 ⋅ (𝑠 ⋅ 𝑥)
1𝑅 ⋅ 𝑥 = 𝑥

For a right 𝑅-module, flip the actions above, using the map ⋅ ∶ 𝑀 × 𝑅 → 𝑀 .
When 𝑅 is a field then 𝑀 is a vector space.

An algebra over a field is a vector space 𝐴 with a map × ∶ 𝐴 × 𝐴 → 𝐴 that is
right and left distributive, and scalar compatible (𝑎𝑥 × 𝑏𝑦 = (𝑎𝑏)[𝑥 × 𝑦]).

3.2 Idempotents
An idempotent of 𝐴 is an element 𝑒 such that

𝑒2 = 𝑒
and by induction 𝑒𝑛 = 𝑒, 𝑛 ≥ 1. Two idempotents 𝑒1, 𝑒2 are orthogonal if 𝑒1𝑒2 =
0 = 𝑒2𝑒1. It is quite easy to see that:

1. If 𝑒1, 𝑒2 are commuting idempotents, then 𝑒1, 𝑒2 is also an idempotent.

2. If 𝑒 is an idempotent, then 𝐼𝑑 − 𝑒 is an idempotent.

3. If 𝑒1, 𝑒2 are orthogonal idempotents, then 𝑒1 + 𝑒2 is an idempotent.

4. If 𝑒 is an idempotent, 𝑒 and 𝐼𝑑 − 𝑒 are orthogonal.
An idempotent 𝑒 isminimal if and only if 𝑒𝐴𝑒 is 1-dimensional. Also, 𝑒 is minimal
if and only if 𝑒 cannot be written as a sum of two nonzero idempotents 𝑒1 + 𝑒2.
Example 1. Let 𝐴 = ℂ[ℤ𝑘], where 𝑡 is the generator. Then the minimal idempo-
tents are

𝑒𝑗 = 1
𝑘

𝑘

∑
𝑛=1

𝑒
𝑖2𝜋𝑗𝑛

𝑘 𝑡𝑛
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Example 2. Let 𝐴 = ℂ[ℤ2 × ℤ2]. Then the minimal idempotents are
1
4[(0, 0) + (1, 0) + (0, 1) + (1, 1)]
1
4[(0, 0) + (1, 0) − (0, 1) − (1, 1)]
1
4[(0, 0) − (1, 0) − (0, 1) + (1, 1)]
1
4[(0, 0) − (1, 0) + (0, 1) − (1, 1)]

3.3 Morita Equivalence
If we consider a module over an algebra, we get a way for an algebra to act on a
vector space. Whereas representations provide a way for groups to act on vector
spaces, modules provide a way for algebras to act on vector spaces. Here we in-
troduce Morita equivalence. Two rings are Morita equivalent if the categories
of modules over these rings are equivalent.

Two categories 𝒞 , 𝒟 are equivalent if there exists functors 𝐹 ∶ 𝒞 → 𝒟 and
𝐺 ∶ 𝒟 → 𝒞 such that there exist natural isomorphisms

𝜖 ∶ 𝐹 ∘ 𝐺 → 𝐼𝑑𝐷
𝜂 ∶ 𝐼𝑑𝐶 → 𝐺 ∘ 𝐹

Equivalently, a functor 𝐹 ∶ 𝒞 → 𝒟 yields an equivalence if:

1. For any two objects 𝑐1, 𝑐2 ∈ 𝒞 , the map

hom𝒞 (𝑐1, 𝑐2) → hom𝒟 (𝐹 (𝑐1), 𝐹 (𝑐2))

is bijective (fully faithful). When this map is surjective, 𝐹 is called full,
and when it’s injective, 𝐹 is called faithful.

2. Each object 𝑑 ∈ 𝒟 is isomorphic to an object of the form 𝐹 (𝑐) for 𝑐 ∈ 𝒞 .
(Essentially surjective, or dense)

The classic example of Morita equivalent rings is a ring 𝑅 and the ring 𝑆 of 𝑛 × 𝑛
matrices with entries in 𝑅, for any 𝑛.
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Theorem 3. Let (𝑅, 1) be a ring and 𝑆 = 𝑀𝑛(𝑅) be the ring of 𝑛 × 𝑛 matrices
with entries in 𝑅. Then 𝑅 ≅𝑀 𝑆.

Proof. Let 𝑀 be a (right) 𝑅−module. Let 𝐹 (𝑀) = {(𝑚1, ..., 𝑚𝑛)|𝑚𝑖 ∈ 𝑀}.
𝐹 (𝑀) becomes a module over 𝑀𝑛(𝑅), where all “vectors” 𝑎𝐹 (𝑀) arise from
matrix-vector multiplication for 𝑎 ∈ 𝑀𝑛(𝑅).

If 𝑓 ∶ 𝑀1 → 𝑀2 is a module homomorphism (morphism in the category of
𝑅−modules), we have 𝐹 (𝑓) ∶ 𝐹 (𝑀1) → 𝐹 (𝑀2) given by 𝐹 (𝑓)(𝑚1, ..., 𝑚2) =
(𝑓(𝑚1), ..., 𝑓 (𝑚𝑛)), so 𝐹 is a covariant functor.

We have functors 𝐹 from 𝑅−modules to 𝑆−modules. Now we need a functor
going the opposite way. Let 𝑁 be an 𝑆−module. Let 𝑒(𝑟) be the 𝑛×𝑛 matrix where
the (0, 0)𝑡ℎ entry is 𝑟 ∈ 𝑅, and 0 everywhere else. Note that 𝑒(1) is an idempotent,
and 𝑒(1)𝑒(𝑟) = 𝑒(𝑟)𝑒(1).

Let 𝐺(𝑁) = {𝑠𝑒(1)|𝑠 ∈ 𝑁}. Define the scalar multiplication with 𝑟 ∈ 𝑅 by
𝑠𝑒(1) ⋅ 𝑟 ∶= 𝑠𝑒(1)𝑒(𝑟) = 𝑠𝑒(𝑟)𝑒(1). Since 𝑠𝑒(𝑟) ∈ 𝑁 , 𝐺(𝑁) is an 𝑅−module. If
𝑔 ∶ 𝑁1 → 𝑁2 is an 𝑆−module homomorphism, let 𝐺(𝑔)(𝑠𝑒(1)) = 𝑔(𝑠)𝑒(1). One
can then easily check that 𝐺 is a covariant functor.

Now we compute that, for 𝑀 an 𝑅−module,

𝐺 ∘ 𝐹 (𝑀) = {(𝑚1, ..., 𝑚𝑛)𝑒|𝑚𝑖 ∈ 𝑀} = {
⎛
⎜
⎜
⎜
⎝

𝑚1
0
⋮
0

⎞
⎟
⎟
⎟
⎠

|𝑚 ∈ 𝑀} ≅ 𝑀

and, for 𝑁 an 𝑆−module,

𝐹 ∘ 𝐺(𝑁) = {𝑠1𝑒(1), ..., 𝑠𝑛𝑒(1)|𝑠𝑖 ∈ 𝑁}

Denote the matrix with the (𝑖, 𝑖)𝑡ℎ component equal to 1 and all other entries equal
to 0 by 𝑒𝑖𝑖. Note that 𝑒𝑖𝑖 is idempotent, 𝑒𝑖𝑖𝑒𝑗𝑗 = 0, and ∑𝑖 𝑒𝑖𝑖 = 1. Then 𝑁 =
𝑁𝑒11 ⊕ ... ⊕ 𝑁𝑒𝑛𝑛. Note also that 𝑁𝑒𝑖𝑖 ≅ 𝑁𝑒𝑗𝑗 as 𝑀𝑛 modules. Let 𝜋𝑖 ∶ 𝑁 →
𝑁𝑒𝑖𝑖 be the projection map and 𝜓𝑖 ∶ 𝑁𝑒𝑖𝑖 → 𝑁 be the embedding, and 𝜙𝑖𝑗 ∶
𝑁𝑒𝑖𝑖 → 𝑁𝑒𝑗𝑗 be the isomorphism from 𝑁𝑒𝑖𝑖 to 𝑁𝑒𝑗𝑗 . Note that these maps are
𝑀𝑛-module homomorphisms since 𝑒𝑖𝑖𝐴 = 𝐴𝑒𝑖𝑖 for an 𝑅−module 𝐴.

Take any 𝑠 ∈ 𝑁 . Then we have a homomorphism

𝛼 ∶ 𝑁 → 𝐹 ∘ 𝐺(𝑁)
𝛼 ∶ 𝑠 ↦ (𝜋1(𝑠), ..., 𝜋𝑛(𝑠))

↦ (𝜙11𝜋1(𝑠), ..., 𝜙𝑛1𝜋𝑛(𝑠)) ∈ 𝐹 ∘ 𝐺(𝑁)
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and a homomorphism

𝛽 ∶ 𝐹 ∘ 𝐺(𝑁) → 𝑁
𝛽 ∶ (𝑠1𝑒1, ..., 𝑠𝑛𝑒1) ↦ (𝜙11(𝑠1𝑒1), ..., 𝜙1𝑛(𝑠𝑛𝑒1))

↦ 𝜓1(𝜙11(𝑠1𝑒1)) + ... + 𝜓𝑛(𝜙1𝑛(𝑠𝑛𝑒1))

By inspection 𝛽 = 𝛼−1 and vise versa, so 𝐹 ∘ 𝐺(𝑁) ≅ 𝑁 .

3.4 Fusion Categories
Let 𝑅 be a ring. An 𝑅−linear category 𝒞 is a category such that, for all 𝐴, 𝐵 ∈
𝑂𝑏𝑗(𝒞 ), the set of morphisms 𝐻𝑜𝑚(𝐴, 𝐵) in 𝒞 has the structure of an 𝑅−module,
and composition of morphisms is 𝑅−bilinear. If all hom sets 𝐻𝑜𝑚(𝐴, 𝐵) are
abelian groups and composition of morphisms is bilinear, then 𝒞 is preadditive.

A monoidal category (tensor category) 𝒞 is a category equipped with:

1. A functor

⊗ ∶ 𝒞 × 𝒞 → 𝒞

called a tensor product,

2. an object 1 ∈ 𝒞 with natural isomorphisms

𝜆𝑥 ∶ 1 ⊗ 𝑋 → 𝑋
𝜌𝑥 ∶ 𝑋 ⊗ 1 → 𝑋

for all 𝑋 ∈ 𝑂𝑏𝑗(𝒞 ),

3. Natural isomorphisms, for all 𝐴, 𝐵, 𝐶 ∈ 𝑂𝑏𝑗(𝒞 ), such that

𝑎𝐴,𝐵,𝐶 ∶ (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶)

such that the triangle identity is satisfied (the following diagram commutes):

𝐴 ⊗ (1 ⊗ 𝐵) (𝐴 ⊗ 1) ⊗ 𝐵

𝐴 ⊗ 𝐵

𝑎𝐴,1,𝐵

𝜌𝐴⊗1𝐵 1𝐴⊗𝜆𝐵
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and the pentagon identity is satisfied (the following diagram commutes)
for all 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝑂𝑏𝑗(𝒞 ):

(𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷)

((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷 𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))

(𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷 𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

𝑎𝐴,𝐵,𝐶⊗𝐷

𝑎𝐴,𝐵,𝐶 ⊗𝐼𝑑𝐷

𝑎𝐴⊗𝐵,𝐶,𝐷

𝑎𝐴,𝐵⊗𝐶,𝐷

𝐼𝑑𝐴⊗𝑎𝐵,𝐶,𝐷

Think about the objects of the category being a monoid under the operation ⊗ A
linear category 𝒞 is additive if every finite set of objects has a biproduct ⊕ (think
about direct sums).

An additive category is preabelian if every morphism 𝑓 ∶ 𝑋 → 𝑌 has a ker-
nel and cokernel (𝑌 /𝐼𝑚(𝑓)).

A preabelian category is abelian if every “injective” morphism (monomor-
phism) is the kernel of some morphism, and every “surjective” morphism (epi-
morphism) is the cokernel of some morphism. The quotes around injective and
surjective note that they are the generalizations of injective/surjective maps. Thus
an abelian category is a generalization of the category of abelian groups, that al-
lows for things like exact sequences to arise naturally.

An abelian category 𝒞 is semisimple if there is a collection of simple objects
𝐴𝑖 ∈ 𝑂𝑏𝑗(𝒞 ) (an object is strongly simple in an abelian 𝕜−linear category if
𝐸𝑛𝑑(𝐴𝑖) ≅ 𝕜, and if 𝕜 is algebraically closed every simple object is strongly sim-
ple) such that any 𝐴 ∈ 𝑂𝑏𝑗(𝒞 ) is the direct sum of finitely many simple objects.
Alternatively, a linear monoidal category with ground field 𝕜 is semisimple if:

1. It has finite biproducts ⊕,

2. There is a morphism 𝑒 ∶ 𝐴 → 𝐴 with an object 𝐵 and morphisms 𝑟 ∶ 𝐴 →
𝐵, 𝑠 ∶ 𝐵 → 𝐴 such that 𝑠 ∘ 𝑟 = 𝑒, 𝑟 ∘ 𝑠 = 𝐼𝑑𝐵,

3. There exist objects 𝑋𝑖 labeled by an index set 𝐼 such that 𝐻𝑜𝑚(𝑋𝑖, 𝑋𝑗) ≅
𝛿𝑖𝑗𝕜 such that, for any 𝐴, 𝐵 ∈ 𝒞 , there is a natural isomorphism

⊕𝑖∈𝐼𝐻𝑜𝑚(𝐴, 𝑋𝑖) ⊗ 𝐻𝑜𝑚(𝑋𝑖, 𝐵) ≅ 𝐻𝑜𝑚(𝐴, 𝐵)
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A monoidal category (𝒞 , ⊗, 1) is (left, right) rigid if, for every object 𝑋, there is
a (resp. left, right) inverse 𝑋∗ such that there are natural isomorphisms

𝑋∗ ⊗ 𝑋 ≅ 1
(𝑋 ⊗ 𝑋∗ ≅ 1)

If the category is left and right rigid the category is said to be rigid. The operation
of taking duals is a contravariant functor on a rigid category.

Kuperberg proved that finite, connected, semisimple, rigid monoidal (tensor)
categories are linear.

A fusion category is a linear, finite, strongly semisimple rigid monoidal cate-
gory.

4 Condensed Matter

𝑎 𝑏

𝑐
𝑏𝑎

𝑐

Figure 3: Fusion of anyons.

Suppose we have a (2D) sample with two anyons 𝑎 and 𝑏 fusing to get 𝑐. See
3. The direct sum ⊕𝑐𝑉 𝑐

𝑎𝑏 is a decomposition of ℋ𝑎 ⊗ ℋ𝑏 This corresponds to a
quantum state in an 𝑁𝑐

𝑎𝑏−dimensional Hilbert space 𝑉 𝑐
𝑎𝑏. In topological quantum

field theory, 𝑉 𝑐
𝑎𝑏 is the vector space corresponding to the 3-punctured 2-sphere.

More complicated Hilbert spaces (and 2-manifolds) can be constructed from such
𝑉 𝑐

𝑎𝑏 (3-punctured spheres). The decomposition of these Hilbert spaces is modeled
using fusion categories - this is because fusion can be much more complicated, as
in 4.

We can build any type of particle fusion in a TQFT by a 3-punctured sphere. By
gluing 3-punctured spheres together we can get a fusion of any number of particles,
but we have to be specific about how we build the associated Hilbert spaces. For
instance, we need associators:
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Figure 4: More complicated fusion of anyons.

𝐷

⋅

𝐴 𝐵 𝐶

𝐷 𝐷

⋅ = ⋅

⋅ 𝐶 𝐴 ⋅

𝐴 𝐵 𝐵 𝐶

that give (𝐴 ⊗ 𝐵) ⊗ 𝐶 ≅ 𝐴 ⊗ (𝐵 ⊗ 𝐶), pentagon equations, and 6𝑗− symbols
(see 5).
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𝑉𝑎𝑏𝑐𝑑 ≅ ⊕𝑦𝑉𝑎𝑏𝑦 ⊗ 𝑉𝑐𝑑𝑦∗

𝑉𝑎𝑏𝑐𝑑 ≅ ⊕𝑥𝑉𝑎𝑏𝑥 ⊗ 𝑉𝑐𝑑𝑥∗

𝑑 𝑐

𝑎 𝑏

𝑑 𝑐

𝑎 𝑏

𝑦

𝑑 𝑐

𝑎 𝑏

𝑥

≅

𝑐𝑑

𝑏𝑎

𝑎 𝑏

𝑑 𝑐

Figure 5: 6𝑗-symbols in TQFT.

4.1 Kitaev’s Lattice Model
4.1.1 Toric Code

Consider a square lattice with toric boundary conditions with spins associated to
each edge. For each vertex 𝑣, define the operator

𝐴 = ∏
𝑖∈𝑣

𝜎𝑥
𝑖

and for each plaquette (square bounded by four edges) define the operator

𝐵 = ∏
𝑖∈𝑝

𝜎𝑧
𝑖

where the product in 𝐴 is given over the four edges touching 𝑣 and the product in
𝐵 is given over the four edges bordering the plaquette 𝑝. The stabilizer space for
this code is |𝜓⟩ such that

𝐴𝑣 |𝜓⟩ = |𝜓⟩ , ∀𝑣,
𝐵𝑝 |𝜓⟩ = |𝜓⟩ , ∀𝑝
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The stabilizer space of this code is 4-dimensional, and thus can encode 2 qubits.
Violations of the stabilizer space is the syndrome of the code, and their positions
represent quasiparticles. The hamiltonian is given by

𝐻 = −𝐽 ∑𝑣
𝐴𝑣 − 𝐽 ∑𝑝

𝐵𝑝, 𝐽 > 0

4.1.2 Kitaev’s Lattic Model

Let 𝑅 be a finite-dimensional semisimple Hopf algebra. For a compact oriented
surface Σ with a cell decomposition Δ with orientation 𝑜, we define the Hilbert
space

ℋ𝐾 (Σ, Δ, 𝑜) = ⊗edges𝑅

We need not specify an orientation of Δ: If 𝑜′ differs by 𝑜 by the reversal of ori-
entation of a single edge 𝑒, we have the isomorphism

ℋ𝑘(Σ, Δ, 𝑜) → ℋ𝑘(Σ, Δ, 𝑜′)
𝑥𝑒 ↦ 𝑆(𝑥𝑒)

We call a site of a cell decomposition a pair (𝑣, 𝑝) of a vertex and plaquette. To
each site we associate a vertex operator 𝐴𝑎

𝑣,𝑝 ∶ ℋ𝑘(Σ, Δ) → ℋ𝑘(Σ, Δ) by acting by
𝑎(𝑛) on each edge 𝑥𝑛 touching the vertex. We also associate a plaquette operator
𝐵𝛼

𝑣,𝑝 ∶ ℋ𝑘(Σ, Δ) → ℋ𝑘(Σ, Δ) by acting by 𝛼(𝑛) on each edge 𝑥𝑛 bordering the
plaquette. If we define ℎ ∈ 𝑅, ℎ ∈ 𝑅 as the Haar integrals of 𝑅, 𝑅, respectively,
then the Hamiltonian is given by

𝐻 = ∑𝑣
(1 − 𝐴ℎ

𝑣) + ∑𝑝
(1 − 𝐵ℎ

𝑣 )

Note that since, ℎ2 = ℎ and ℎ is central, all 𝐴ℎ
𝑣 , 𝐵ℎ

𝑝 commute with each other, and
each is idempotent.

4.2 Turaev-Viro Model
The Turaev-Viro (-Barrett-Westbury) Model is a 3D TQFT based on a fusion
category 𝒞 . If Γ is a finite group and 𝒞 = 𝑉 𝑒𝑐𝑡Γ, the category of Γ−graded vector
spaces, this becomes Dijkgraaf-Witten theory.
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A pivotal category is a rigid monoidal category equipped with a monoidal
natural isomorphism 𝐴 → (𝐴∗)∗.

For a pivotal category, the left trace 𝑇 𝑟𝑙(𝑓 ) and right trace 𝑇 𝑟𝑟(𝑓 ) of a mor-
phism 𝑓 are given by

𝑋∗ 𝑓(𝑋) 𝑓(𝑋) 𝑋∗

𝑋∗ 𝑋 𝑋 𝑋∗

𝑇 𝑟𝑙(𝑓 )

𝐼𝑑𝑋∗ ⊗ 𝑓

𝑇 𝑟𝑟(𝑓 )

𝑓 ⊗ 𝐼𝑑𝑋∗

The left (right) dimension of 𝑋 ∈ 𝑂𝑏𝑗(𝒞 ) is given by 𝑑𝑖𝑚𝑙(𝑋) = 𝑇 𝑟𝑙(𝐼𝑑𝑋)
(𝑑𝑖𝑚𝑟(𝑋) = 𝑇 𝑟𝑟(𝐼𝑑𝑋)).

A spherical category is a pivotal category where the left and right trace oper-
ations coincide on all objects.

Given a spherical fusion category 𝒜 , theTuraev-ViroModel associates a vec-
tor space 𝐻𝒜

𝑇 𝑉 (Σ, Δ) given a closed oriented surface Σ with a cell decomposition
Δ defined as follows: for every oriented edge 𝑒 ∈ Δ, associate a simple object 𝑙𝑒
such that 𝑙𝑒 = 𝑙∗

𝑒 , and build our vector space via

𝐻𝒜
𝑇 𝑉 (Σ, Δ) = ⊕𝑙[⊗𝐶|𝜕𝐶=𝑒1∪...∪𝑒𝑛𝐻𝑜𝑚𝒜 (1, 𝑙𝑒1 ⊗ ... ⊗ 𝑙𝑒𝑛)]

where the 𝑒𝑖 are taken in the counterclockwise order on 𝜕𝐶 . Given a cobordism
𝑀 between (Σ, Δ) and (Σ′, Δ′) we define an operator 𝑍(𝑀) ∶ 𝐻𝒜

𝑇 𝑉 (Σ, Δ) →
𝐻𝒜

𝑇 𝑉 (Σ′, Δ′) based on a cell decomposition of 𝑀 , and actually independently of
any specific cell decomposition: If 𝜕𝑀 = Σ ⊔ Σ′, then

𝐻𝒜
𝑇 𝑉 (𝜕𝑀) = 𝐻𝒜

𝑇 𝑉 (Σ)∗ ⊗ 𝐻𝒜
𝑇 𝑉 (Σ′) = hom(𝐻𝒜

𝑇 𝑉 (Σ), 𝐻𝒜
𝑇 𝑉 (Σ′))

given by

𝑍𝑇 𝑉 (𝑀) = 𝑑𝑖𝑚(𝒜)−2𝑣(𝑀)
∑

𝑙
(𝑒𝑣(⊗𝐶𝑍(𝐶, 𝑙)) ∏𝑒

𝑑𝑖𝑚(𝑙(𝑒))𝑛𝑒)

where 𝑒 runs over all unoriented edges in 𝑀 , 𝑣(𝑀) is the number of internal ver-
tices in 𝑀 plus half of the internal vertices in 𝜕𝑀 , and 𝑛𝑒 is 1 if the edge 𝑒 is
internal and 1

2 if 𝑒 ∈ 𝜕𝑀 .
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4.3 Levin-Wen Model
(These are also called stringnet models)
Here we once again begin with a spherical fusion category 𝒜 and consider colored
graphs Γ on Σ. Edges of Γ are colored by an object of 𝒜 and vertices are colored
by hom(1, 𝑉1 ⊗...⊗𝑉𝑛), where each 𝑉𝑖 is the object associated to the edge (ordered
counterclockwise) intersecting the vertex in question. The orientation of the edge
is outward, so if the object associated to the inward edge is 𝑉𝑖, the object with the
outward orientation should be 𝑉 ∗

𝑖 .
We define the stringnet space

𝐻𝑠𝑡𝑟(Σ)={Formal linear combinations of colored graphs on Σ}/Local relations

The local relations are, for graphs equivalent outside of a disc and inside the disc
differ by the following 3 relations, the graphs are equivalent.

𝜑 𝜓 = 𝜑 ∘𝑋 𝜓

𝑉𝑛

𝑉1

𝑋

𝑊𝑛

𝑊1

𝑊𝑛𝑉1

𝑉𝑛 𝑊1

⋅ ⋅ = ⋅ ⋅

𝑉𝑛

𝑉1 𝑉𝑘

𝑉1

𝑊𝑛

𝑊1

𝑉1

𝑉𝑛

𝑉1⊗...⊗𝑉𝑘

𝑊𝑛

𝑊1

𝑐𝑜𝑒𝑣 =𝑉 ∗𝑉 𝑉

The is a well-known theorem that 𝐻𝒜
𝑇 𝑉 (Σ) is canonically isomorphic to 𝐻𝑠𝑡𝑟(Σ).

It is not hard to see that, if the category is a group 𝐺, the coloring of Γ with
elements in 𝐺 encode a map into 𝐵𝐺. This is why Levin-Wen models are a gen-
eralization of Dijkgraaf-Witten theories.
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