
Beautiful Problems

Alec Lau

Contents

1 Bounding Steps of the Euclidean Algorithm 1

2 2023 Numbers to a Perfect Square 2

3 The Wave Equation on a Riemannian Manifold 3

4 Algebraic Topology with Statistics of Particles 5

5 A Surjection between Groups 5

6 Infinite Integers 6

7 A Quantum Error-Correcting Code 6

8 A Generalization of Shor 7

9 Real Projective Space 9

1 Bounding Steps of the Euclidean Algorithm

Proof. Looking at the Euclidean algorithm, we see that the worst case step is if the fewest multi-

pliers are applied, so this points us toward using the Fibonacci sequence to bound this. First we

prove that, in Euclid’s algorithm, we always have an ≥ fn+2. We use induction on n. Note that

the results hold when n = 0 and n = 1; when n = 0 we want a0 ≥ f2 = 1, which is trivial as a0

is a positive integer. When n = 1 we want a1 ≥ f3 = 2, which holds because a1 > a0. This last

inequality holds because a0 is the residue of a2 modulo a1 (or, in the special case a1 and a0 are the

numbers we begin with, we assume they are different). Now suppose n ≥ 2. Then an−2 is given

us the residue of an when divided by an−1; an = qan−1 + an−2. Since an > an−1, we have q ≥ 1

and thus an ≥ an−1 + an−2 ≥ fn+1 + fn = fn+2 by induction hypothesis.

Thus if it takes more than 45 divisions, then in the setup we have either x or y is equal to an

with n ≥ 46. But according to google we see that f48 > 232, thus an ≥ fn + 2 ≥ f48 > 232 which

contradicts the assumption.
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2 2023 Numbers to a Perfect Square

Proof. In examining this sequence, we define bn and sn via

an+1 =
√
bn+1 =

√
bn + sn+1, 0 ≤ n ∈ Z ≤ 2023 (1)

with b0 = 0, sn = xn

n∑
i=1

1

xi
+

1

xn

n∑
i=1

xi − 1 (2)

bn must be a perfect square for all 1 ≤ n ≤ 2023, so the sn must be a positive integer that is the

difference between two perfect squares. (It’s positive because xn
∑n

i=1
1
xi

+ 1
xn

∑n
i=1 xi must be

greater than 2, as it has two sums of xn

xn
, and all xi are positive).

Rewriting this, we have

an =

√√√√ n∑
i=1

si (3)

Examining the difference between two consecutive terms in this sum, we have

sn+1 − sn = xn

n∑
i=1

1

xi
+

1

xn

n∑
i=1

xi − 1 (4)

− xn−1
n−1∑
i=1

1

xi
− 1

xn−1

n−1∑
i=1

xi + 1 (5)

= (xn − xn−1)

n−1∑
i=1

1

xi
+ (

1

xn
− 1

xn−1
)

n−1∑
i=1

xi +
xn
xn

+
xn
xn

(6)

To keep the an at a minimum, we consider that each sn is the smallest possible integer that,

when added to bn, gives us another perfect square. So we’ll start with an = 1, so that {bn} ≥

0, 1, 4, 9, 16, 25, 36, 49... The next nth square is the previous square plus 2n + 1, so sn = 2n + 1.

(Since (n+ 1)2 − n2 = 2n+ 1). Thus we have

sn+1 − sn = 2⇒ (7)

2 = (xn − xn−1)

n−1∑
i=1

1

xi
+ (

1

xn
− 1

xn−1
)

n−1∑
i=1

xi + 2⇒ (8)

0 = (xn − xn−1)

n−1∑
i=1

1

xi
+ (

1

xn
− 1

xn−1
)

n−1∑
i=1

xi (9)

However, this cannot be the case, since the xi are pairwise different and all are positive. Thus we

can’t have every sn be 2n+ 1.

However, if we skip every other square, such that {bn} ≥ 0, 1, 4, 16, 25, 49, 64, 100, 121... we
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avoid having sn+1 − sn equal to 2. So instead of the sequence bn ≥ n2, we have bn ≥ (n + n−1
2 )2

if n is odd, and bn ≥ (n+ n
2 − 1)2 if n is even. Thus we have

sn = bn+1 − bn ≥ (
3(n+ 1)− 1

2
)2 − (

3n

2
− 1)2 (10)

≥ 6n for n even (11)

≥ (
3(n+ 1)

2
− 1)2 − (

3n− 1

2
)2 (12)

≥ 3n for n odd (13)

Thus we can avoid having our sn equal to 2, and presumably can find an xn for every n such that

sn = 6n or 3n.

We now have the minimum values of bn, and, taking the square root of these values, we get

an ≥ (n + n−1
2 ) if n is odd, and an≥(n + n

2 − 1) if n is even. For n = 2023, we thus have

an ≥ (2023 + 2022
2 ) = 3034.

3 The Wave Equation on a Riemannian Manifold

Proof. Expanding (∇2f)(X,Y ), we have this equal to (∇(∇f))(X,Y ) by definition. By the defi-

nition of ∇, we have this equal to (∇X(∇f))(Y ). From class and the footnote, we have

∇X [∇f(Y )] = (∇X(∇f))(Y ) +∇f(∇XY )⇒ (14)

(∇X(∇f))(Y ) = ∇X [∇f(Y )]−∇f(∇XY ) (15)

Again by the definition of ∇, the right-hand side then equal to ∇X [∇Y f ]−∇∇XY f , which, again

from class and the footnote, is ∇X [Y f ]− (∇XY )f . Thinking of [Y f ] as another function, we have

this equal to X(Y f)− (∇XY )f . Thus (∇2f)(X,Y ) = X(Y f)− (∇XY )f .

When we define ∆f =
∑n

i,j(g
−1)ij(∇2f)(∂i, ∂j), we can use our formula proved above to obtain∑n

i,j(g
−1)ij(∂i(∂jf) − (∇∂i∂j)f) =

∑n
i,j(g

−1)ij∂i(∂jf) − (g−1)ij(∇∂i∂j)f . Now we examine the

second term,
∑n

i,j −(g−1)ij(∇∂i
∂j)f . We will drop the summation in front and use notation with

the understanding that repeated indices are summed over. This term is equal, by definition, to
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−(g−1)ijΓk
ij∂kf . We have

−(g−1)ijΓk
ij∂kf = −(g−1)ij(

1

2
(g−1)kl(∂igj,l + ∂jgil − ∂lgij))∂kf (16)

=
1

2
(−(g−1)ij(g−1)kl∂igjl − (g−1)ij(g−1)kl∂jgil + (g−1)ij(g−1)kl∂lgij)∂kf (17)

= (
−1

2
(−g−1)ij(g−1)kl∂igjl +

−1

2
(g−1)ij(g−1)kl∂jgil)∂kf +

1

2
((g−1)ij(g−1)kl∂lgij)∂kf

(18)

In examining the first two terms, since the indices are dummy indices, we can relabel indices and

rewrite their sum as −(g−1)ij(g−1)kl(∂igjl)∂kf . We know from the first hint that this is equal to

(∂i(g
−1)jk)∂kf , so we now have

= (∂i(g
−1)jk)∂kf +

1

2
(g−1)ij(g−1)kl∂lgij∂kf (19)

= (∂i(g
−1)jk)∂kf +

1

2
(∂l log(det g))∂kf (20)

(21)

as per the second hint. Then,

= (∂i(g
−1)jk)∂kf + (∂l log(

√
det g))∂kf (22)

= (∂i(g
−1)jk)∂kf +

1√
det g

(∂l
√

det g)∂kf (23)

(24)

Putting this all together, we have

∆f = (g−1)ij∂i(∂jf) + (∂i(g
−1)jk)∂kf +

1√
det g

(g−1)ij(∂l
√

det g)∂kf (25)

We now show that this is equal to 1√
det g

∂i((g
−1)ij

√
det g∂if). Since ∂i is a derivation, we can use

the ‘product rule’ and apply ∂i to each of the three terms:

1√
det g

∂i((g
−1)ij

√
det g∂jf) =

1√
det g

((∂i(g
−1)ij)

√
det g∂jf + (g−1)ij(∂i

√
det g)∂jf + (g−1)ij

√
det g∂i∂jf)

(26)

= (∂i(g
−1)ij)∂jf +

1√
det g

(g−1)ij(∂i
√

det g)∂jf + (g−1)ij∂i(∂jf)

(27)

By relabeling our dummy indices, we see that this is the result we want.
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4 Algebraic Topology with Statistics of Particles

Proof. Starting with R3, suppose we have two identical particles. We fix one particle at the origin

and look at the configuration space of the other particle. We cannot have the two particles in

the same place, because of the Pauli Exclusion principle. Other than that, we can have the other

particle go to any nonzero point in R3. In doing a single particle exchange twice, we have the path

of the particle during this process is a loop. We have that π1(R3−{0}) ∼= π1(S2), because R3−{0}

can be continuously deformed into S2 through the map x 7→ x
|x| . Thus π1(R3−{0}) ∼= π1(S2) ∼= 0.

Thus, two exchanges give the identity operator. In operator language, this means that, for Â the

exchange operator, Â2ψ = 1ψ. Thus the eigenvalues of Â must be equal to 1 or -1, corresponding

to bosons and fermions.

In R2, the same map gives us π1(R2 − {0}) ∼= π1(S1) ∼= Z. Thus A2ψ � 0, so we can allow any

eigenvalue of A to be the statistics of the identical particles.

5 A Surjection between Groups

Proof. We have two generators for G that we shall define as h : (a, b) → (−a, b) and j : (a, b) →

(a,−b). It is not hard to see that h2 = j2 = e, the identity of G. There are other rotation

operators as generators, but the subgroup generated by rotation operators has torsion, so the

image of any homomorphism in H for this subgroup must also be finite. G is infinite on account

on two generators f, g with f : (a, b) 7→ (a + 1, b), g : (a, b) 7→ (a, b + 1). It is easy to see that the

subgroup generated by these two generators is isomorphic to Z×Z. This is infinite, so the problems

that could arise from the finiteness of H come from these. Label our surjective homomorphism by

ϕ. Observe that

ϕ(hfx) = ϕ(h)ϕ(fx) (28)

ϕ(hf−x) = ϕ(fxh) = ϕ(fx)ϕ(h) = ϕ(h)ϕ(fx) = ϕ(hfx) (29)

Thus ϕ(hfx) = ϕ(hf−x), so ϕ(h)ϕ(fx) = ϕ(h)ϕ(f−x). Left multiplying by ϕ(h)−1, we find that

ϕ(fx) = ϕ(f−x)⇒ ϕ(f)x = ϕ(f)−x, so ϕ(f) = ϕ(f)−1.

Now notice ϕ(f) = ϕ(f)x+1−x = ϕ(f)xϕ(f)ϕ(f)−x = ϕ(f)2x+1 for any x ∈ Z. Thus all odd

powers of ϕ(f) map to ϕ(f), and all even powers of ϕ(f) map to the identity of H. Thus H is

finite.
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6 Infinite Integers

Proof. In the spirit of the above problems, we want the first digit to satisfy a3 = 7. An a ∈ Z/[10]Z

that satisfies this is 3, so we let 3 be the first digit of z. Thus, we take 33 = 27. In order to make

the second digit equal to 0, we need the second digit in z to be 2× 7 = 4. This formula [digit]×7

as the next digit in z is due to the fact that we want the digit in question of our number to be

congruent to 0. This sets the digit of the cube of the current z equal to 0. To illustrate this,

consider this calculation:

We have 433 = 79507. We want our next digit a to satisfy (a × 102 + 43)3 ≡ 7 mod (1000).

Cubing this out, we find our number equal to a3106 + 3a210443 + 3a102432 + 433. Let us denote

the digit value we’re trying to eliminate by d. We only need to consider the latter two terms, as we

only care about the third digit for now (if we can’t have this equal to zero now, we’re screwed). We

have now a554700 + 79507 (We can see that this new factor of a always has 7 as the last nonzero

digit). Thus, we need a× 7 = 5 in order for this sum to have a third digit of 0. If we set a equal

to 7× 7× d, we get s := 9× d so that s+ d = 0. Thus, by setting a equal to 7d, we get the cube

of a× 10n+[our known digits for z, of n− 1 digits] cancels out our nth digit in the cube.

Example:

33 = 27⇒ 2× 7 = 4→

433 = 79507⇒ 5× 7 = 5→

5433 = 160103007⇒ 3× 7 = 1→
...

9244222170515433 = 78997095458824743405566517000000000000007*
...

*This value is courtesy of Wolfram Alpha

Following this algorithm yields a z satisfying z3 = 7 ∈ R. Thus, such a z exists.

7 A Quantum Error-Correcting Code

1. For bit-flip errors on the last three qubits, we get 23 = 8 possible states. Since we allow

a phase error, a bit flip error, or no error on the first qubit, we multiply 8 by 3 to get 24

possible states for this system.

2. In the stabilizer formalism, for four qubits, to encode one qubit we need to have three

generators to ensure the code subspace is a qubit i.e. 2-dimensional: 2n/2k = 2 for n = 4

qubits.
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3. For a bit flip, acting by Z flips the sign. For a phase flip, acting by X flips the sign. To

ensure commutation, we want an even number of X and Z collisions for each index. We want

a stabilizer with X in the first index, and a stabilizer Z in the first index as well. We also

want a distinct number of Z operators across indices across a distinct set of generators in

order to tell which bits have been flipped. Three generators that satisfy these conditions are

Generator 1: Id⊗ Z ⊗ Z ⊗ Z (30)

Generator 2: Z ⊗ Z ⊗ Id⊗ Z (31)

Generator 3: X ⊗X ⊗X ⊗ Z (32)

In analyzing data for certain errors, we find

Stabilizer: 1 2 3

Identity + + +

3rd bit flip - + +

1st bit flip + - +

Phase flip + + -

2nd bit flip - - +

4th bit flip - - -

Phase flip & 1st bit flip + - -

Thus our generators are able to tell which single-bit errors can occur in this system.

4. Looking at the table, we get almost all permutations of 3 values of + and -. We’re missing

one:

Stabilizer: 1 2 3

“Accidental” error - + -

Looking at the generators, the error that causes these results are a bit flip and phase flip on

the 3rd qubit.

8 A Generalization of Shor

1. First we want to find the number of generators. There are 16 qubits, so 216/2k = 2, so

k = 15. There are 16 possible single-qubit bit flips. Inspired by Shor, there are 4 possible

phase flips, for which we need 3 stabilizer generators:

X1 ⊗ ...⊗X8, X5 ⊗ ...⊗X12, X9 ⊗ ...⊗X16 (33)

7



We are left with 12 stabilizer generators to determine the 16 bit flips. To ensure commutation,

we need an even number of colliding indices of X and Z. What accomplishes this is

Z1 ⊗ Z2, Z2 ⊗ Z3, Z3 ⊗ Z4 (34)

Z5 ⊗ Z6, Z6 ⊗ Z7, Z7 ⊗ Z8 (35)

Z9 ⊗ Z10, Z10 ⊗ Z11, Z11 ⊗ Z12 (36)

Z13 ⊗ Z14, Z14 ⊗ Z15, Z15 ⊗ Z16 (37)

There are 12 above stabilizer generators, and each bit flip corresponds to a unique comgina-

tion of -1 eigenvalues for these generators.

2. Denote |01...0n11...1m〉 by |0n1m〉. We have

|0〉L =
1

4
(|04〉+ |14〉)⊗4 (38)

=
1

4
[ |016〉 ± |041408〉 ± |14012〉+ |1808〉 ± |01214〉+ |04140414〉+ |140814〉 ± |180414〉 (39)

± |081404〉+ |041804〉+ |14041404〉 ± |11204〉+ |0818〉 ± |04112〉 ± |140418〉+ |116〉] (40)

where ± denotes a - when talking about |1〉L. Notice that the sign switches under XL if

there are an odd number of switches from |04040404〉 to whatever tensor term there is. Thus,

we can accomplish XL via

XL = Z ⊗ Id⊗3 ⊗ Z ⊗ Id⊗3 ⊗ Z ⊗ Id⊗3 ⊗ Z ⊗ Id⊗3 (41)

which has 4 physical Pauli operators. For ZL, we seek ZL |0〉L = |0〉L , ZL |1〉L = − |1〉L.

This begs the use of X. Expanding |1〉L, we get

|016〉 − |041408〉 − |14012〉+ |1808〉 − |01214〉+ |04140414〉+ |140814〉 − |180414〉 (42)

− |081404〉+ |041804〉+ |14041404〉 − |11204〉+ |0818〉 − |04112〉 − |140418〉+ |116〉 (43)

switching a clump of 4 qubits with X transforms each term into another, which has then a

different parity of switches from |04040404〉 to whatever tensor term there is. Letting

ZL = Id⊗4 ⊗X⊗4 ⊗ Id⊗8 (44)
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we get ZL |0〉L = |0〉L because |0〉L has all plus signs. We also have ZL |1〉L

|041408〉 − |016〉 − |1808〉+ |14012〉 − |04140414〉+ |01214〉+ |180414〉 − |140814〉 (45)

− |041804〉+ |081404〉+ |11204〉 − |14041404〉+ |04112〉 − |0818〉 − |116〉+ |140418〉 (46)

This is equal to − |1〉L by inspection.

3. XL and ZL cannot commute, because we need an odd number of Zs in each clump of 4 qubits

in XL for the correct signs to turn negative, but we need one clump to have all four Z for

ZL, always giving an odd number of anticommuting tensor indices.

9 Real Projective Space

1. We have, for x ∈ Sn−1, x21+...+x2n = 1. For [x] ∈ RPn, we have the equivalence (x1, ..., xn) =

(−x1, ...,−xn). Let M be the submanifold of Rn2

given by symmetric n×n matrices A such

that Tr(A) = 1 and AA = A. Define a map, for fi,j([x]) = xixj , given by

Φ : RPn−1 →M (47)

Φ([x]) 7→
(
fi,j([x])

)
(48)

We check that the image of Φ is indeed M . We have the klth entry in [fi,j([x])][fi,j([x])] as

fk,i([x])fi,l([x]) = xkx1xlx1 + xkx2xlx2 + ...+ xkxnxlxn (49)

= xkxl(x
2
1 + x22 + ...+ x2n) (50)

Thus [fi,j([x])][fi,j([x])] = [fi,j([x])]. The trace is easy as well: Tr(fij([x])) = x1x1 + ... +

xnxn = 1. Furthermore, [fij([x])] is symmetric, because xkxl = xlxk. This is smooth

because the fi,j functions are smooth because multiplication is smooth (x 7→ xxT ). The

inverse map is similarly smooth (xxT 7→ x), so it remains to show that Φ is bijective.

We see that xixj = xixj for all 1 ≤ i, j ≤ n if and only if {xi, xj} = {xi, xj}, except if

{xi, xj} = {−xi,−xj}. However, these antipodal points are identified in RPn−1, Φ is a

bijection and thus diffeomorphism.

2. Because RPn−1 is diffeomorphic to M , it suffices to show that M is compact, i.e. closed

and bounded. It is bounded because every xi has |xi| ≤ 1, so every entry is at most 1.

For closedness, we use the determinant map, which we know is smooth. We have (A) =

εi1,...,inx1xi1 ...xnxin , where εi1,...,in is the Levi-Civita symbol, which is zero if the indices are
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repeated. Thus the only nonzero terms in the determinant are x21x22...x2n, with plus or minus

signs corresponding the the parity of permutations in the n indices. Since there are equal

numbers of odd permutations as even permutations, the determinant of any matrix in M is

0. This is a closed set, and, since the determinant is smooth, M must be closed. Thus M is

closed and bounded, i.e. compact.
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