
Symplectic Geometry & Topology Problems

Alec Lau

Problems assigned by Umut Varolgunes in Autumn 2019.

Question 1. Find 5 different ways in which a function on R2n can give rise to a canonical

transformation of T ∗Rn.

Proof. According to Weinstein, if we have a symplectomorphism from T ∗Rn×T ∗Rn to T ∗R2n, we

can identify canonical relations from T ∗Rn to itself via functions on T ∗R2n. We want to look at

maps

gi : R2n →T ∗R2n (1)

gi(x, y) 7→(x, y, ξ, ξ′), for x, y ∈ Rn (2)

(x, y,
∂gi
∂x

,
∂gi
∂y

) (3)

That correspond to the four canonical transformation functions given in the Wikipedia page:

T ∗Rn × T ∗Rn T ∗R2n

(x, ξ)× (y, ξ′) (x, y, ξ, ξ′)

(x, ξ)× (y, ξ′) (x,−ξ′, ξ, y)

(x, ξ)× (y, ξ′) (−ξ, y, x, ξ′)

(x, ξ)× (y, ξ′) (−ξ,−ξ′, x, y)

From Weinstein, we know that such symplectomorphisms from T ∗Rn×T ∗Rn to T ∗R2n can be iden-

tified with certain canonical relations from Rn to Rn. Since the four functions given on Wikipedia

are in terms of the first two coordinates of T ∗R2n, those are the coordinates in which our function

is given. A fifth symplectomorphism is

T ∗Rn × T ∗Rn → T ∗R2n (4)

(x, ξ)× (y, ξ) 7→ (
x− ξ

2
,
y − ξ′

2
,
x+ ξ

2
,
y + ξ′

2
) (5)
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This is a symplectomorphism because first it is obviously a bijection. Next, with our standard

symplectic forms on T ∗Rn,
∑
i dxi∧dξi, give us

∑
i(dxi−dξi)∧(dxi+dξi) =

∑
i dxi∧dξi−dξi∧dxi =∑

i 2(dxi ∧ dξi). The coordinates with y, ξ′ work the same way, giving us the standard symplectic

form on T ∗R2n when dividing by 2.

Question 2. Prove that GL(n,C) ∩O(2n) = GL(n,C) ∩ Sp(n) = Sp(n) ∩O(2n) = U(n)

Proof. First we prove GL(n,C) ∩O(2n) = U(n).

Lemma 1. If an automorphism M on R2n is compatible with J : (p, q) 7→ (−q, p), p, q ∈ Rn, then

M is of the form

M =

 X Y

−Y X

 (6)

Proof. We write J as

J =

 0 −In

In 0


For an automorphism M to be compatible with J , we must have JTMJ = M . By inspection,

JT = −J , so JTMJ = M ⇒ −JMJ = M ⇒ −J2MJ = JM ⇒MJ = JM . Thus

X Y

Z W


 0 −In

In 0

 =

 0 −In

In 0


X Y

Z W

 (7)

Y −X

W −Z

 =

−Z −W

X Y

⇒ (8)

M =

 X Y

−Y X

 (9)

Lemma 2. GL(n,C) ∩O(2n) = U(n)

Proof. We can go from GL(n,C) to elements of GL(2n,R), when, if we write M ∈ GL(n,C) with
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mij = xij + iyij as M = X + iY , for real matrices X,Y . Thus we have a map

m :

(
M

)
7→

 X Y

−Y X

 (10)

Clearly m is injective, as the only way to get the identity in GL(2n,R) is if Y = 0, X = In, which

corresponds to the identity in GL(n,C). We now consider elements of GL(n,C) as the matrices

constructed above. Taking m(M∗), we get

(
M∗

)
=

(
X − iY

)T
=

(
XT − iY T

)
7→

XT −Y T

Y T XT

 =

 X Y

−Y X


T

=

 X Y

−Y X


−1

(11)

where the last equality is due to us being in O(2n). This is the inverse of m(M), soM ∈ U(n).

Lemma 3. GL(n,C) ∩ Sp(n) = U(n)

Proof. With this symplectic structure on R2n:

Ω =

 0 −In

In 0

 (12)

Since we know that M is compatible with Ω, Ω = MTΩM . So,

 X Y

−Y X


T  0 −In

In 0


 X Y

−Y X

 =

 0 −In

In 0

⇒ (13)

XT −Y T

Y T XT


Y −X

X Y

 =

 0 −In

In 0

⇒ (14)

XTY − Y TX −XTX − Y TY

Y TY +XTX −Y TX +XTY

 =

 0 −In

In 0

 (15)

This is possible if and only if Y TX − XTY = 0 and XTX + Y TY = In. Thus, M∗M = (X −

iY )T (X + iY ) = [XTX + iXTY − iY TX + Y TY ] = [XTX + Y TY + i(0)] = In. Thus M is

unitary.
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Lemma 4. Sp(n) ∩O(2n) = U(n)

Proof. If a matrixM is in Sp(n), thenMTΩM = Ω. Furthermore, ifM ∈ O(2n), thenMMTΩM =

MΩ⇒ ΩM = MΩ. For our Ω, we see that this is the same condition needed for Lemma 1, so thus

M =

 X Y

−Y X

 (16)

From Lemma 2, we see that such an M can be the image of some complex matrix M ′ = X + iY

under m. For M to be in O(2n), we must have

 X Y

−Y X


T  X Y

−Y X

 =

XT −Y T

Y T XT


 X Y

−Y X

 (17)

=

XTX + Y TY XTY − Y TX

Y TX −XTY Y TY +XTX

 =

In 0

0 In

 =

(
I2n

)
(18)

where the last equality is true if and only if XTX + Y TY = In, Y
TX = XTY . When we look at

M ′ := m−1(M), we see that (M ′)∗M ′ = (X − iY )T (X + iY ) = XTX + iXTY − iY TX + Y TY . If

X,Y are such that XTX + Y TY = In, Y
TX = XTY , then this product is equal to In, so M ′ is

unitary.

Question 3. The fundamental group of the Lagrangian Grassmannian Λ(n) is free cyclic and its

generator goes into the generator of the mapping induced by Det2.

Proof. Suppose we have a Lagrangian plane λ ∈ Λ(n). This means that ω(v, w) = 0,∀v, w ∈ λ.

Given another Lagrangian plane λ′ ∈ Λ(n), we know that an automorphism φ on R2n from λ to λ′

must preserve the symplectic structure as well as the Euclidean structure, as (Iφ(v), φ(w)) must

still be zero for λ′ to be in Λ(n). Thus φ must be in O(2n) ∩ Sp(n) = U(n) from above. We

also have that Iλ is orthogonal to λ because ω(v, w) = (Iv, w) = 0, Iv ∈ Iλ,∀v, w ∈ λ. Let ξ, ξ′

be orthogonal framings of λ, λ′ ∈ Λ(n), respectively. Since we can have an automorphism from

ξ to ξ′, fix ξ. Since every ξ′ can be written as φ(ξ) for some φ ∈ U(n), all ξ′ are in the orbit

of ξ, and so U(n) acts transitively on Λ(n). O(n) preserves the subspace by simply rotating the
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the real part of the frame ξ. However, this doesn’t make the transformed plane transverse, Thus,

Λ(n) ∼= U(n)/O(n), and we have a fibration

O(n)→ U(n)→ Λ(n) (19)

Since, for O ∈ O(n), OTO = In,det(OT ) det(O) = 1, so det(O) = ±1. The square of the

determinant of some φ ∈ U(n) carrying the plane where the first n entries are 0 into λ depends

only on λ. Thus we have the map

2

det : Λ(n)→ S1 (20)

Denote SΛ(n) by the set {λ ∈ Λ(n)|det2 λ = 1}. In the same way as above, SΛ(n) ∼= SU(n)/SO(n)

is a submanifold of Λ(n). Finally, we define a map

z2 : S1 → S1 (21)

eiϕ 7→ e2iϕ (22)

Thus we have a commutative diagram of six fibrations:

SO(n) O(n) S0

SU(n) U(n) S1

SΛ(n) Λ(n) S1

det

det

z2

det2

With these fibrations, we have the long exact sequences of homotopy groups:

π2(S0) π1(SO(n)) π1(O(n)) π1(S0) π0(SO(n))

π2(S1) π1(SU(n)) π1(U(n)) π1(S1) π0(SU(n))

π2(S1) π1(SΛ(n)) π1(Λ(n)) π1(S1) π0(SU(n))

π0(SO(n)) π0(Λ(n)) π0(S0)

det∗

det∗

z2∗

det2∗

First we examine π1(SU(n)). This is the complex rotation group for unit vectors in Cn ∼= R2n, or

S2n−1. We look at the stabilizer subgroup for a point in S2n−1. By spherical symmetry, consider
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(1, 0, ..., 0) ∈ S2n−1. A stabilizing subgroup of SU(n) for this point is SU(n− 1) :

SU(n− 1)→ SU(n) (23)

A 7→

1 0

0 A

 (24)

Due to this embedding, we have a fibration

SU(n− 1)→SU(n)→ S2n−1 (25)

π1(SU(n− 1))→ π1(SU(n))→ π1(S2n−1) (26)

First we calculate π1(SU(1)) ∼= 0, since SU(1) is a singleton. Inductively, we have

π1(SU(n− 1))→ π1(SU(n))→ π1(S2n−1)⇒ (27)

0→ π1(SU(n))→ 0 (28)

Therefore, π1(SU(n)) ∼= 0,∀n. Next we prove that SO(n) is path-connected. By the same logic

as above, Sn ∼= SO(n + 1)/SO(n). Suppose we have a path I : [0, 1] → Sn. Lift this path to

SO(n + 1) by the inverse quotient. If this path breaks, the remaining points of the path are

contained in SO(n). Inductively, since SO(1) is a singleton, it is path-connected, so SO(n) is path

connected, and so π0(SO(n)) ∼= 0. Our exact sequence diagram is then

0 π1(SO(n)) π1(O(n)) 0

0 0 π1(U(n)) Z

0 π1(SΛ(n)) π1(Λ(n)) Z

0

Due to exactness, π1(SΛ(n)) ∼= 0, and therefore SΛ(n) is simply connected, and therefore path-
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connected, so π0(SΛ(n)) ∼= 0. Therefore, our exact sequence is

π1(SΛ(n))→ π1(Λ(n))→Z→ π0(SΛ(n)) (29)

0→ π1(Λ(n))→Z→ 0 (30)

Hence π1(Λ(n)) ∼= Z.

Question 4. Work out moment maps for the Hamiltonian actions of R3 and SO(3) on T ∗R3,

corresponding to translations and rotations of R3. Make the connection with linear and angular

momentum from classical mechanics.

Proof. We check out Lie group actions of R3 and SO(3) on T ∗R3:

Let G = R3. Then g ∼= g∗ ∼= T0R3 ∼= R3. We identify T ∗R3 ∼= R6 := {(q, p) ∈ R3 × R3}, with

standard symplectic structure ω =
∑3
i dqi ∧ dpi. We have R3 act on T ∗R3 by the map

ψ : R3 → Sym(T ∗R3, ω) (31)

ψ(a) 7→ [(q, p)→ (q + a, p)] (32)

We know that ψ(a) is a symplectic action, because ψ(a)∗ω(q̇, q̇′) =

ω(dψ(a)(q̇), dψ(a)(q̇′)), and d(q + a) = dq + da = dq = dId. Inspired by classical mechanics, we

propose that our momentum map is given by

µ : T ∗R3 → g∗ (33)

µ(q, p) 7→ p (34)

We check that this is a moment map. First, we calculate the map µa:

µa((q, p)) = 〈µ((q, p)), a〉 = 〈p, a〉 = p(a) = a1p1 + a2p2 + a3p3 (35)

dµa = a1dp1 + a2dp2 + a3p3 (36)

with a# the vector field generated by the one-parameter subgroup {exp(ta)|t ∈ R} ⊂ R3, given by
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a1p1 + a2p2 + a3p3. We examine ιa#ω. With the standard symplectic form, this is equal to

(
0 0 0 a1 a2 a3

) 0 −Id3

Id3 0

 = a1dp1 + a2dp2 + a3dp3 (37)

Thus, µa is a Hamiltonian function for the covector a# = a1p1 + a2p2 + a3p3. We can also see

that µ ◦ ψ(a) = µ, because µ((q, p)) = µ((q + a, p)) = p. Furthermore, the coadjoint action is the

identity:

Ad∗gp(q̇) = 〈p, gq̇g−1〉 = 〈p, q̇〉 = p(q̇) (38)

because the action by translation acts by identity on the tangent vectors of R3. Thus, µ ◦ ψ(a) =

Ad∗g ◦ µ = µ, so µ is a moment map.

Now let G = SO(3). Let SO(3) act on T ∗R3 by the map

ψ : SO(3)→ Sym(T ∗R3, ω) (39)

ψ(R) 7→ [(q, p)→ (Rq,Rp)] (40)

This is a symplectic action because the usual symplectic product is

ω(q̇, q̇′) = (Jq̇, q̇′) = (J(q, vq), (q
′, vq′)) = ((−vq, q), (q′, vq′)) = −vTq q′ + qT vq′ ⇒ (41)

ω(ψ(R)(q̇), ψ(R)(q̇′)) = (J(Rq,Rvq), (Rq
′, Rvq′)) = ((−Rvq, Rq), (Rq′, Rvq′)) (42)

= −vTq RTRq + (q′)TRTRvq′ (43)

= −vTq q′ + qT vq′ (44)

In order to find so(3), we find conditions on A such that eA ∈ SO(3). eA
T

= (eA)T , so we require

that (eA)T eA = eA
T

eA = eA
T+A = Id. Thus we require that A is skew-symmetric. By Jacobi’s

formula, det(eA) = eTr(A). Since we require det(eA) = 1,Tr(A) must be zero. This is already

satisfied if A is skew-symmetric, so, since this exponential map is surjective, so(3) is the set of
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skew-symmetric matrices. All of these matrices are of the form


0 x y

−x 0 z

−y −z 0

 (45)

Thus we identify R3 with so(3) via the isomorphism

φ : (R3, [·, ·] = ×)→ (so(3), [·, ·] = usual commutator) (46)

φ


x

y

z

 7→


0 −z y

z 0 −x

−y x 0

 (47)

:= x 7→ A (48)

The matrix defined above gives us a way to take the cross product between two vectors: Aξ = x×ξ.

Again inspired by classical mechanics, we propose that our momentum map is given by

µ : T ∗R3 → g∗ (49)

µ((q, p)) 7→ q × p (50)

We then have

µa((q, p)) = 〈µ((q, p)), a〉 = 〈q × p, a〉 = (q × p) · a (51)

First we examine dµ(1,0,0)((q, p)). This is equal to d(q2p3 − q3p2) = p3dq2 + q2dp3 − p2dq3 − q3dp2.

Now we check that this is equal to ιt(1,0,0)ω. Under our correspondence,

(1, 0, 0) 7→


0 0 0

0 0 −1

0 1 0

 (52)
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Thus ιt(1,0,0)ω is equal to

t


0 0 0

0 0 −1

0 1 0


 0 −Id3

Id3 0

 =



0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0



:= M (53)

Then we have

(q1, q2, q3, p1, p2, p3)M = (0, p3,−p2, 0,−q3, q2) = p3dq2 − p2dq3 − q3dp2 + q2dp3 (54)

This is the same as our expression for dµ(1,0,0). The same works for the other generators (0, 1, 0)

and (0, 0, 1). Next we check that µ ◦ ψ(R) = Ad∗R ◦ µ:

µ((Rq,Rp)) = Ad∗R(q × p) (55)

(Rq ×Rp)(X) = 〈q × p,AdR−1X〉 (56)

R(q × p)(X) = 〈q × p,R−1XR〉 (57)

R(q × p)(X) =
∑
i

(q × p)i (58)

= 〈q × p, (R−1X)×〉 (59)

where the × subscript denotes mapping the skew-symmetric matrix R−1XR into the R3 lie al-

gebra. It remains to prove that 〈Rq, p〉 = 〈q,R−1p〉. (R−1p)i =
∑
j R
−1
ij pj , and 〈q,R−1p〉 =∑

i,j qiR
−1
ij pj = R−1ji qipj = 〈(R−1)T q, p〉, and since R ∈ SO(3), this is equal to 〈Rq, p〉. Thus,

〈q × p, (R−1X)×〉 = R(q × p)(X) (60)

Thus µ((q, p)) = q × p is a moment map.

Connecting to classical mechanics, p is linear momentum and q × p is angular momentum.
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Question 5. Let λ1, ..., λn be positive real numbers and X = S2
λ1
× ...×S2

λn
, where S2

λ denotes the

unit two sphere with invariant area form re-scaled by λ. The group K = SO(3) acts diagonally on

X = (S2)n with moment map

Φ : X → t∨ ∼= R3, (x1, ..., xn) 7→ x1 + ...+ xn (61)

The symplectic quotient is the moduli space of closed n-gons with lengths λ1, ..., λn

X//SO(3) = {(x1, ..., xn) ∈ (R3)n| ||xj ||λj , x1 + ...+ xn = 0}/SO(3) (62)

Its topology depends on the choice of λ1, ..., λn, see for example Hausmann-Knutson “The coho-

mology ring of polygon spaces”. In general there are a finite number of “chambers” in which the

topology of X//SO(3) is constant. The chambers in which X//SO(3) is non-empty are described

by the following:

Lemma 5. X//SO(3) = ∅ if and only if λj ≤
∑
i6=j λi for all j = 1, ..., n.

Proof. In Example 3.3.3, the manifold is the product of 2-spheres with a new symplectic form: the

nth sphere is the symplectic manifold (S2, λnω) =: S2
λn

, so the manifold X is S2
λ1
× ...× S2

λn
. The

regular symplectic form ω on S2 is found by integrating in the normal direction of the volume form

in R3 under the inclusion S2 → R3: ω = ιxẋ+yẏ+zż(dx∧ dy ∧ dz) = xdy ∧ dz− ydx∧ dz+ zdx∧ dy

at each point. The Lie group SO(3) has its Lie algebra so(3) isomorphic to R3 as shown in the

previous problem. That SO(3) “acts diagonally” just means that it acts on each factor S2
λn

of X.

The momentum map is given by

µ : X → so(3) (63)

X → R3 ∼= so(3) (64)

(x1, ..., xn) 7→ φ(x1 + ...+ xn) (65)

This is a moment map because (M1, ω1, µ1)× (M2, ω2, µ2) has moment map given by π∗1µ1×π∗2µ2,

where π1 is the projection map onto the ith factor. This uses the diagonal map of the lie algebra

g 7→ g× g and dual g∗ × g∗ → g∗ given by (ξ1, ξ2) 7→ ξ1 + ξ2. Knowing this, we can just examine
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the momentum map for each S2
λn

. For the normal sphere, the action on SO(3) is rotation about

two axes while fixing the third by symmetry. By the same logic as above, ωx(u, v) = 〈x, u× v〉, so

the inclusion µ of S2 into R3 ∼= so(3) satisfies ιa#ω = 〈µ, a〉. We can also see that µ is equivariant.

By symmetry, fix a point under the rotation R ∈ SO(3) so that µ(x)◦φ(R)(Y ) = µ(x)(Y ) = x(Y ).

Then Ad∗Rx = 〈x,AdR−1Y 〉 = 〈x,R−1Y R〉 = 〈x,R−1 · Y 〉 = 〈Rx, Y 〉 = x(Y ). Thus this is a

moment map. Since X//SO(3) := µ−1(0)/SO(3), we examine the inverse image of µ(0). 0 here

corresponds to the matrix of all zeros in so(3). Under our isomorphism to R3, this corresponds

to the zero vector. Thus µ−1(0) is the set of x1 + ... + xn = 0. To ensure that these are vectors

in X, we require that the jth vector xj is an element of the the 2-sphere scaled by λj . Thus

X//SO(3) = {(x1, ..., xn) ∈ (R3)n|||xj || = λj , x1 + ...+ xn = 0}

For X//SO(3) to be nonempty we need λj ≤
∑
i 6=j λi. For n = 2, x1 = −x2, so ||x1|| = ||x2||

which is satisfied. For n = 3, this creates a triangle if x1 + x2 + x3 = 0 (each xi can be thought

of as a side of the polygon). Thus this is equivalent to the triangle inequalities: ||x1|| ≤ ||x2|| +

||x3||, ||x2|| ≤ ||x1||+ ||x3||, ||x3|| ≤ ||x2||+ ||x1||. For n > 3, assume without loss of generality that

λ1 ≥ ... ≥ λn. We know that there exists a j ≤ n−1 such that λ1 < |λ2 + ...+λj−λj+1− ...−λn|.

To see this, suppose not. Then there exists a j ≤ n− 1 such that λ2 + ...+ λj − λj+1 − ...− λn is

positive and that λ2 + ...+ λj−1 − λj − ...− λn is negative. The only case where this is not true is

if λ2 ≥ λ3 + ...+ λn. If this is true, then λ1 < |λ2 − ...− λn| implies that λ1 < λ2, a contradiction.

Suppose

λ1 < |λ2 + ...+ λj − λj+1 − ...− λn|, (66)

λ1 < |λ2 + ...+ λj−1 − λj − ...− λn|, where (67)

λ2 + ...+ λj − λj+1 − ...− λn > 0, (68)

λ2 + ...+ λj−1 − λj − ...− λn < 0 (69)

This implies that λj > λ1, a contradiction. Thus, there exists a (relabeled) j where λ1 > |λ2 +

...+ λj − λj+1 − ...− λn|. Now treat λ1, λ2 + ...+ λj , and λj+1 + ...+ λn as the sides of a triangle,

and the condition follows. Then x1 + ...+ xn = 0 with their respective required norms if and only

if λi ≤
∑
i 6=j λj .
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Question 6. Prove the exact sequence

H̃ → G̃
F−→ H1(M ;R) (70)

what is the corresponding exact sequence of Lie algebras?

Proof. The exact sequence is

0→ H̃ → G̃
F−→ H1(M,R)→ 0 (71)

where G̃ is the universal cover of the group G of the path-connnected component of the group

of symplectomorphisms containing the identity, H̃ is the subgroup of homotopy classes of paths

in G with fixed endpoints to a Hamiltonian path, M is a compact symplectic manifold without

boundary, and F ({φt}) =
∫ 1

0
λtdt, for λt(·) = ω(dφtdt , ·) for all t ∈ [0, 1]. The inclusion of the

subgroup H̃ into G̃ is indeed injective; if another element of H̃ were mapped to the identity of G̃,

the image would cease to be isomorphic to the subgroup and this would not be the inclusion. In

addition, F is surjective; take a closed 1-form u. u gives a symplectic vector field Xt = X on M

that is constant in time. Let φt be the family of symplectomorphisms generated by Xt. Then

F ({φt}) =

∫ 1

0

[ω(Xt, ·)]dt =

∫ 1

0

[ω(X, ·)]dt = [ω(X, ·)] = [u] (72)

Thus we can create a map s : H1(M ;R) → G̃ such that F ◦ s = Id, given by s(u) = exp(tX),

where X is the vector canonically identified with u (X is such that ιXω = u). Now we prove that

the image of the inclusion of paths homotopic with fixed endpoints to Hamiltonian paths have

flux image 0. If φ is Hamiltonian, it is the endpoint of a Hamiltonian isotopy φt. This isotopy

corresponds to a family of Hamiltonian functions Ht. Then

F ({φt}) =

∫ 1

0

ω(
dφt
dt
, ·)dt =

∫ 1

0

ι dφt
dt
ωdt =

∫ 1

0

dHtdt = 0 (73)

Suppose F ({φt}) = 0. Then there exists a function f : M → R such that
∫ 1

0
(dφtdt , ·)dt = df .

Consider the Hamiltonian flow φsf of f . Now it suffices to prove this claim for (φsf )−1 ◦φ. Call this

new path ψt := φ2t for 0 ≤ t ≤ 1
2 and φ1−2tf ◦φ1 for 1

2 ≤ t ≤ 1. ψt is generated by a smooth family
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of vector fields Xt such that
∫ 1

0
Xtdt = 0. Therefore we consider φ as some φt for some isotopy

with
∫ 1

0
Xtdt = 0. Define a vector field Yt :=

∫ 1

0
Xsds, and let θpt be the flow generated by Yt.

Then dθpt
dp = Yt ◦ θpt . From before we know that Y1 = 0, and Y0 is trivially 0. Then θp0 = θp1 = Id

for all p. Call ψt := θ1t ◦ φt. This is an isotopy from Id to φ. Then

F ({ψt}) = F ({θ1t }) + F ({φt}) if F is a homomorphism (74)

=

∫ 1

0

[ω(Yt, ·)]ds+

∫ 1

0

[ω(Xt, ω)]dt if F is homotopy invariant (75)

= [ω(Yt, ·)] +

∫ 1

0

[ω(Xt, ω)]dt by integrating (76)

= −
∫ 1

0

[ω(Xt, ·)]dt+

∫ 1

0

[ω(Xt, ·)]dt = 0 (77)

Thus, if F is indeed homotopy invariant and a homomorphism, ψt is a Hamiltonian isotopy from

Id to φ, and thus is the image of the inclusion from H̃. In proving that F is a homomorphism, we

examine the image of F of a juxtaposition of paths. Let χt be defined as φ2t for 0 ≤ t ≤ 1
2 and

ψ2t−1 ◦ φ1 for 1
2 ≤ t ≤ 1.

F ({χt}) =

∫ 1

0

ω(
d

dt
χt, ·)dt (78)

=

∫ 1/2

0

ω(
dφ2t
dt

, ·)dt+

∫ 1

1/2

ω(
dψ2t−1

dt
, ·)dt (79)

=

∫ 1

0

ω(
dφt
dt
, ·)dt+

∫ 1

0

ω(
dψt
dt

, ·)dt (80)

= F ({φ}) + F ({ψ}) (81)

Checking that F ’s homotopy invariance, we use the association of 1st de Rham cohomology to the

fundamental group, which leads us toward homotopy invariance:

H1(M ; )← Hom(π1(M);R) (82)

π1(M)→ R (83)

γ(s) ∈ R/Z 7→
∫ 1

0

∫ 1

0

ω(
dφt
dt

(γ(s)),
dγ

ds
(s))dtds (84)

Since the symplectic form is preserved and thus stays closed, the integral depends only on the

homotopy class of γ. Define β(s, t) := φ−1t (γ(s)), so φt(β) = γ ⇒ dφt(β)∂β∂s = dγ
ds (s), dφt(β)∂β∂t =
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−dφtdt (γ(s)), so the integral becomes

∫ 1

0

∫ 1

0

ω(−∂β
∂t
,
∂β

∂s
)dsdt =

∫ 1

0

∫ 1

0

ω(
∂β

∂s
,
∂β

∂t
)dsdt =

∫
R/Z

∫ 1

0

β∗ω (85)

This integral only depends on the homotopy class of β, given that β(s + 1, t) = β(s, t), β(s, 1) =

φ−11 (β(s, 0)). Thus the integral only depends on the homotopy class of φt with φ0 = Id, φ1 = φ.

The corresponding exact sequence of Lie algebras is

0→ R a−→ C∞(M)
b−→ χ(M,ω)

c−→ H1(M ;R)→ 0 (86)

where a maps to real-valued smooth functions on M , b maps Hamiltonian functions H to the

vectors XH , and b maps vectors X to the class [ω(X, ·)].

The classical flux conjecture is explicitly stated as follows: the subgroup inH1(M ;R) defined by

π1(G)
F−→ H1(M ;R) is a discrete subgroup for all symplectic manifolds. Unpacking this definition,

we take loops with basepoint the identity in G and try to deduce properties even for those that

wander outside of the identity’s Weinstein neighborhood, where inside a Hamiltonian isotopy is

known. That F (π1(G)) is a discrete subgroup of H1 is equivalent to H, the group of Hamiltonian

symplectomorphisms being a submanifold of the group of symplectomorphisms. The flux conjecture

was proved by Kaoru Ono in 2006.
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