Surgery Theory in Lagrangian Immersions

Alec Lau

The following is a presentation I gave for Math 257A: Symplectic Geometry and Topology, taught by Umut Varolgunes.

Contents

1	Surgery Operations	1
2	An explicit Lagrangian Immersion & Surgery	1
3	Lagrangian Cobordisms	3

1 Surgery Operations

One set of techniques to generate manifolds is through surgery. The surgery we consider is, for a closed (k + l)-manifold, we remove $S^k \times D^l$ and glue $D^{k+1} \times S^{l-1}$ along the boundary caused by removing $S^k \times D^l$.

Example 1. The (k+l)-sphere.

First we write the sphere as the boundary of the product of discs.

$$S^{k+l} = \partial(D^{k+1} \times D^l) \tag{1}$$

$$= \partial D^{k+1} \times D^l \cup D^{k+1} \times \partial D^l \tag{2}$$

$$=S^k \times D^l \cup D^{k+1} \times S^{l-1} \tag{3}$$

Post-surgery:
$$\rightarrow D^{k+1} \times S^{l-1} \cup D^{k+1} \times S^{l-1}$$
 (4)

$$=S^{k+1} \times S^{l-1} \tag{5}$$

See 1. This action trivializes the homotopy class $S^n \to M$ in $\pi_n(M)$.

2 An explicit Lagrangian Immersion & Surgery

Definition 1. For a symplectic manifold M and a lagrangian submanifold L, an immersion $i : L \hookrightarrow M$ is a Lagrangian Immersion.

Figure 1: Surgeries of common manifolds. One can easily see that, through this kind of surgery, one can generate surfaces of any genus.

Performing surgery on the lagrangian submanifold removes a double point of a lagrangian immersion. We will show an explicit instance of this. Define the map

$$S_y(q,a) = \frac{a^3}{3} - aQ(q) + ay,$$
(6)

for $q \in \mathbb{R}^n, a \in \mathbb{R}, y \in \{-1, 1\}$, and Q a nondegenerate quadratic form. Define a lagrangian submanifold of $\mathbb{R}^n \times \mathbb{R}$ as the kernel of $\frac{\partial S_y}{\partial a}$:

$$L_y := \{(q, a) \in \mathbb{R}^n \times \mathbb{R} | \frac{\partial S}{\partial a} = a^2 - Q(q) + y = 0\}$$
(7)

Define a lagrangian immersion by the map

$$f_y: L_y \to \mathbb{C}^n \tag{8}$$

$$(q,a) \mapsto q + i \frac{\partial S}{\partial q} = q - ia \frac{\partial Q}{\partial q}$$
 (9)

Changing the index of the quadratic form gives us examples of surgeries of all indices.

To see this, suppose $q \in \mathbb{R}^2$ and Q is positive definite. Furthermore, we diagonalize Q so that

 $Q(q) := Q_1 x^2 + Q_2 y^2$. When we consider L_- , we get a double point of our lagrangian immersion. To see this, we project to the x axis in 2. One can see that flipping y removes a double point.

Figure 2: Immersion of L_{\pm} into \mathbb{C}^2 . There is a double point at the origin of the graph $(x, 2aQ_1x)$ for L_{-} .

This corresponds to a surgery, shown in 2. Thus, by adding a handle of index 1, we get rid of the double point.

3 Lagrangian Cobordisms

Definition 2. Two manifolds M and M' are cobordant if there exists a manifold W such that $\partial W = M \sqcup M'$. The triple (W; M, M') is called a cobordism.

A surgery on a manifold M to M' determines a cobordism, as demonstrated by 3.

Definition 3. The trace of the surgery removing $S^k \times D^l \subset M$ is the cobordism (W; M, M')obtained by attaching $D^{k+1} \times D^l$ to $M \times I$ at $S^k \times D^l \times \{1\} \subset M \times \{1\}$. In fact, M and M' are cobordant if and only if M' can be achieved by performing a finite number of surgeries on M.

Lagrangian cobordisms (induced by surgery) are of special focus in symplectic geometry. For example, lagrangian cobordisms induce exact sequences in the Fukaya cateory.

Definition 4. An A_{∞} -category is an associative category in the following sense: For morphisms between objects L_0, L_d denoted $CF^*(L_0, L_d)$, we can decompose this morphism as

$$CF^*(L_0, L_d) \cong CF^*(L_{d-1}, L_d) \otimes CF^*(L_{d-2}, L_{d-1}) \otimes \dots \otimes CF^*(L_0, L_1)$$
 (10)

and the associativity is a higher homotopy equivalence without bound on the degree of homotopies.

Definition 5. For a symplectic manifold (M, ω) , the **Fukaya category** is the category where the objects are lagrangian submanifolds of M, and the morphisms are Floer Chain Complexes $CF^*(L_0, L_1)$, which, if L_0, L_1 intersect transversely, is the module generated by intersection points $L_0 \cap L_1$, viewed as the set of morphisms from L_0 to L_1 .

References

- [1] Audin, Lalonde, Polterovich. "Symplectic rigidity of Lagrangian submanifolds."
- [2] Ranicki. "Algebraic and Geometric Surgery."
- [3] Biran, Cornea. "Lagrangian Cobordism I."

Figure 3: The cobordism generated by a surgery.