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1 Algebra

A group G is a set closed under an operation ? that is associative (g1 ? (g2 ? g3) = (g1 ? g2)? g3),

contains an identity e such that e ? g = g ? e = g∀g ∈ G, and every element has an inverse such

that g ? g−1 = g−1 ? g = e. A group is abelian if g1 ? g2 = g2 ? g1

A ring is a set closed under two operations +,× that is an abelian group under +, and contains

an identity 1R for the operation ×. × is distributive and associative.

A field is a ring where every element except maybe the + identity has a multiplicative inverse

sending it to the multiplicative identity. This forms a group structure for the elements except for

maybe the additive identity. This group, called the multiplicative group, is also abelian.

A module M is an abelian group (operation denoted +) with a ring R such that, for all
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r, s ∈ R, x, y ∈M , we have

r(x+ y) = rx+ ry (1)

(r + s)x = rx+ sx (2)

(rs)x = r(sx) (3)

1Rx = x (4)

This defines scalar multiplication.

A vector space is a module where R is a field.

An algebra A is a vector space with a binary operation · : A × A → A such that, for all

x, y, z ∈ K, r, s ∈ R,

(x+ y) · z = (x · z) + (y · z) (5)

x · (y + z) = z · y + x · z (6)

rx · sy = (rs)x · y (7)

(These axioms define bilinearity)

2 Topology

A topological space is an ordered pair (X, τ) where X is a set an τ is a set of subsets of X such

that:

The empty set and X belong to τ ,

An arbitrary, finite or infinite union of elements of τ is in τ ,

The intersection of any finite number of elements of τ is in τ .

τ is a topology on X, and defining a topology allows one to define continuity, connectedness, and

convergence.

A topological base (basis B of a topological space X is a set of open subsets of X such that

every open subset of X can be written as a union of elements in B. We say the base generates the

topology, which makes sense, as the elements in τ are each a union of elements of B. For this to

be well-used,

The base elements must cover X,

Let B1, B2 ∈ B have B1 ∩B2 := I. For each x ∈ I, there is a B′ ∈ B such that x ∈ B′ ⊆ I

Remark 1. A second-countable space is a space with a countable base.
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A homeomorphism is a map between topological spaces that is an injection, is continuous, and has

a continuous inverse map.

A collection of subsets of a topological space X is locally finite if each point has a neighborhood

that intersects finitely many sets in said collection.

A topological space X is paracompact if every open cover C of X has a refinement (a new open

cover D such that every set in D is contained in C) that is locally finite.

Let X be a set with {Xi} a collection of subsets of whose union is X. Suppose on each Xi

there is a given topology τi with: Xi ∩ Xj is open in Xi and Xj , and the induced topologies on

Xi ∩Xj from both Xi and Xj coincide. It is a theorem that there exists a unique topology on X

that induces upon each Xi the topology τi. This unique topology is the gluing topology.

2.1 Notions in Symplectic Geometry

A symplectic manifold is a manifold with a closed, nondegenerate 2-form ω called the symplectic

form. These show up in cotangent bundles of manifold. For a system modeled as a manifold, the

cotangent bundle describes the phase space (space of all possible configurations of the system, e.g.

Hilbert space) of the system.

Any real-valued differentiable function H on a symplectic manifold can be an energy function

i.e Hamiltonian. Associated to any Hamiltonian is a Hamiltonian vector field, the integral curves

of which (curves sketched along the vector field from the differential equation) is a solution to

Hamilton’s equations.

A Hamiltonian flow or symplectomorphism is the flow of this field on the symplectic manifold.

A Field in terms of Differential Forms

The Electromagnetic Field F is given by the 2-form

F = B3dx ∧ dy +B1dy ∧ dx+B2dz ∧ dx+ E1dx ∧ dt+ E2dy ∧ dt+ E3dz ∧ dt (8)

Computing dF gives us

dF = (
∂B1

∂x
+
∂B2

∂y
+
∂B3

∂z
)[dx ∧ dy ∧ dz] + (

∂E2

∂x
− ∂E1

∂y
+
∂B3

∂t
)[dx ∧ dy ∧ dt] + ... (9)

Setting dF = 0, we find the first two Maxwell’s Equations ∇ ·B = 0,∇×E = −∂B∂t . For the other

two Maxwell’s Equations, we use d ∗ F = 4πρ:

∗F = E3dx ∧ dy + E1dy ∧ dz + E2dz ∧ dx−B1dx ∧ dt−B2dy ∧ dt−B3dz ∧ dt (10)
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with

J = ρdx ∧ dy ∧ dz − J3dx ∧ dy ∧ dt− J1dy ∧ dz ∧ dt− J2dz ∧ dx ∧ dt (11)

where the metric used in the hodge star is the Lorentz metric.

2.2 Curvature (an actually intuitive approach)

*Also check out my quick and dirty notes on differential geometry. Most textbooks introduce the

notion of curvature and then admit that there’s no intuition behind this definition, said definition

being R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] = ∇X∇Y −∇Y∇Y −∇[X,Y ]. This is grossly unintuitive and

only pertains to the Levi-Civita connection. However, Hori et. al. introduce this concept in clear

simplicity, which I’ll repeat here.

We want to be able to differentiate vectors. It’s tempting to write

lim
ε→0

v(x+ ε)− v(x)
ε

(12)

but this definition makes no sense. “+ε” isn’t defined on a manifold, and we can’t subtract vectors

living in different vector spaces. (this is why we need a way to connect these vector space fibers).

In resolving the first issue, we’ll choose to differentiate in the ith direction: denote the point whose

ith coordinate has been advanced by ε by x + ε∂i. In resolving the second issue, we’ll need an i-

dependent automorphism. Since ε is small, we need our automorphism to be close to the identity;

write it as 1+ εAi, for Ai an arbitrary endomorphism. Thus we have

Div =
(1+ εAi)(v(x+ ε∂i))− v(x)

ε
(13)

For v := va∂a, we get

va(x+ ε∂i) = va(x) + ε∂iv
a(x)⇒ (14)

(Div)
a = ∂iv

a + (Ai)
a
bv
b (15)

Thus we have D an operator that sends vectors to vectors v 7→ Div, and the vector w sens

v 7→ Dwv = wiDiv = 〈Dv,w〉, where we define the vector-valued one-form Dv = (Div)dx
i, so

D = d + A is our connection. This is why the covariant derivative along a vector field V is not

dV
dt (t), but

D
dtV (t), because the former vector doesn’t belong to the tangent plane of the curve, i.e.

the first issue with our first guess.

The curvature is intuitively the acceleration of a curve, or the concavity, etc. Either way, the
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data is encoded in a second derivative of sorts. We recast R as D2, where D = d + A, for A our

one-form. Thus R = dA+A ∧A.

2.3 Morse Theory

Let M be a smooth manifold and f :M → R be smooth, and p a nondegenerate critical point

of f . The index of f at p is the number of negative eigenvalues of the hessian of f at p.

Consider M a smooth manifold and f :M → R a smooth function with nondegenerate critical

points (the Hessian of f at these points is nonsingular). If no critical values of f occur between the

numbers a and b, for a < b, then the subspace on which f takes values less than a is a deformation

retract of the subspace where f is less than b; simply define a metric and flow the manifold via the

vector field −∇f/|∇f |2 for time b− a.

An n−dimensional k−handle is a contractible smooth manifold Dk ×Dn−k.

A handle decomposition of a manifold M is a sequence of manifolds W0, ...,Wl, where W0 =,

W0
∼= M , and Wi is obtained by attaching a handle to Wi−1. For example, for the torus, we

take , attach a 0-handle, attached a 1-handle, attach another 1-handle, and then cap it off with a

0-handle.

Theorem 1. Let M be a compact smooth manifold and f : M → R a Morse function with index

k. Suppose that a, b ∈ R are such that f−1[a, b] is nonempty. If f
∫
[a, b] doesn’t contain a critical

point of f , Ma := f−1(−∞, a] is diffeomorphic to Mb := f−1(−∞, b]. If instead f−1[a, b] contains

one critical point with index k, then Mb is diffeomorphic to the union of Ma with a k−handle.

2.4 Chern Classes

2.5 Sheaves

2.5.1 Motivating Example

Suppose we have a topological manifold X. We wish to think about differentiable functions on

X. In order to be well-defined, we need to consider all differentiable functions on all open subsets

on X. On each open set U ⊂ X we have a ring of differentiable functions, denoted O(U). Well,

what about open sets within this open set? We can restrict a differentiable function on an open

set to a smaller open set, and therefore get another differentiable function. I.e., if U ⊂ V is an

inclusion of open sets, we have a restriction map

resV,U : O(V )→ O(U) (16)
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What about a third open set W ⊂ V ? The restriction should commute from U ⊂ V and W ⊂ U

to W ⊂ V :

O(V ) O(W )

O(U)

resV,U

resW,V

resU,W

One can also get an open set from a collection of smaller open sets. So suppose we take two

differentiable functions f1, f2 on an open set U , and let {Ui} be an open cover of U . If our

two functions agree on the open cover, they better agree on U . Thus, if f1, f2 ∈ O(U) and

resU,Uif1 = resU,Uif2, then f1 = f2.

Furthermore, what about the opposite direction, i.e. {Ui} to U? We need to keep track of

overlaps. Thus, given fi ∈ O(Ui), for all i, such that resUi,Ui∩Ujfi = resUj ,Ui∩Ujfj , for all i, j,

given there is some f ∈ O(U) such that resU,Uif = fi, for all i. We didn’t use differentiability

here, so hence we generalize to sheaves.

2.5.2 Presheaves and Sheaves

A presheaf F on a topological space X with

1. To each open set U ⊂ X, we associate an object F (U). The elements of F (U) are called

sections of F over U , often called sections of F , called global sections.

2. For each inclusion U ↪→ V , we have a restriction morphism resV,U : F (V )→ F (U)

3. resU,U = idF(U)

4. If U ↪→ V ↪→W are inclusions of open sets, then restriction maps commute:

F (W ) F (U)

F (V )

resW,U

resW,V resV,U

A presheaf is a sheaf if it satisfies two more axioms, corresponding to the open cover requirements

used the example:

1. (Identity axiom) If {Ui}i∈I is an open cover of U , and f1, f2 ∈ F (U) with resU,Uif1 =

resU,Ujf2 for all i, then f1 = f2.

2. (Gluability axioim) If {Ui}i∈I is an open cover of U , then, given fi ∈ F (Ui) for all i

such that resUi,Ui∩Ujfi = resUj ,Uj∩Uifj for all i, j, then there is some f ∈ F (U) such that

resu,uif = fi, for all i.

Example 1. We let Z denote the sheaf of integer-values functions, with Z(U) the locally constant

integer-valued functions on U , and Z(X) is the group of globally-defined integer-valued functions.

This is a vector space of dimension the number of connected components of X.
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Example 2. R and C are sheaves of real and complex constant functions.

Example 3. O is the sheaf of holomorphic functions, with O(U) the set of holomorphic functions,

with dimension equal to the number of connected components of U ’s topological space. This only

works if X is compact, since the only global holomorphic functions on a compact connected space

are constants.

Example 4. O∗ is the sheaf of nowhere-zero holomorphic functions.

If F is the category of vector spaces, sheaves inherit many properties from linear algebra. If F

is the category of abelian groups, shaves inhereit many properties from homological algebra. A

map between sheaves defined maps on the corresponding abelian groups, and its kernel defined the

kernel sheaf.

Example 5. We can have exact sequences of sheaves:

0→ Z ↪→ O times 2πi−−−−−−→ O∗ → 0 (17)

This sequence isn’t exact on every open set, e.g. C− {0}, but is exact for open sets small enough,

e.g. with trivial cohomology.

2.5.3 Cĕch Cohomology

Let F be the category of abelian groups. For the sheaf relative to a cover {Uα} of X, we define

our cochain complexes in the following way:

C0(F ) =
∏
α

F (Uα) (18)

C1(F ) =
∏
(α,β)

F (Uα ∩ Uβ) (19)

... (20)

where we require total anti-symmetry with higher cochains (σUα,Uβ = −σUβ ,Uα). The chain maps

are given by

(δ0σ)U,V = σV − σU (21)

(δ1ρ)U,V,W = ρV,W − ρU,W + ρU,V (22)

... (23)
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The cohomology groups are thus defined by

Hi(F ) = Kerδi/Imδi−1 (24)

Something special about Cĕch cohomology is that an exact sequnence of sheaves

0→ A→ B → C → 0 (25)

induces a long exact sequence in cohomology:

0→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ ... (26)

2.6 Stalks and Germs

2.6.1 Motivating Example

The germ of a differentiable function at a point p ∈ X is an object of the form

{(f, open U) : p ∈ U, f ∈ O(U)} (27)

modulo the relation (f, U) ∼ (g, V ) if there is some open set W ⊂ U, V containing p where

f |W = g|W . In other words, two functions that are the same in an open neighbrohood of p have

the same germ, even though they may be different elsewhere. The stalk in this example is the set

of germs at p, and denote it Op. The stalk here is a ring: a germ can be the sum of two germs,

defined on the intersection of those two germs’ sets.

2.6.2 Definitions

The stalk of a presheaf F at a point p is the set of germs of F at p, denoted Fp. The germ

is the same definition as above, just for any category:

{(f, open U) : p ∈ U, f ∈ F (U)} (28)

Germs correspond to sections over some open set containing p, with two sections considered the

same if they agree on some smaller open set. Equivalently, a stalk is the colimit of all F (U) over

all open sets U containing p:

Fp = lim
→

F (U) (29)
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The same definition holds for sheaves as well as presheaves.
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