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Abstract

The ability to generate photorealistic images given a
semantic layout is an interesting and active field of re-
search. In semantic image synthesis, a semantic layout is
processed through convolutions, normalization, and nonlin-
earity. Here we attempt to improve spatially-adaptive nor-
malization layers (SPADE) as in [1]. We do this by applying
switchable normalization layers as in [2], and creating a
new generator architecture for SPADE inspired by photore-
alistic style transfer architectures in [7]. Spatially-adaptive
normalization (SPADE) is preferable as it preserves seman-
tic details that would otherwise be lost through normaliza-
tion. By combining SPADE with switchable normalization,
this architecture has adaptable normalization choices with-
out loss of semantic information. By applying our new ar-
chitecture, we find that our novel architecture with switch-
norm produces more detailed images, has greater pixel ac-
curacy, but is also less predictable than that of the baseline.

1. Introduction

Semantic Image Synthesis generates photo realistic im-
ages from semantic image masks. Each mask or segmenta-
tion map includes a pixel by pixel classification of the image
into categories. This pixel level classification has been in-
credibly useful in image processing and style transfer. Gen-
erating images from these masks can be used in content gen-
eration from virtual environments to architectural designs.

Recent methods attempt to generate images by stacking
convolutions between the input and output layers. How-
ever, we start to see issues with normalization washing away
semantic mapping information due to the input layer be-
ing downsampled by the encoder and then later upsampled
by the decoder to decrease convolution layers [1]. To pre-
vent this network from losing information, we propose us-
ing spatially adaptive normalization (SPADE) which allows

the segmentation map to control normalization parameters
in each layer with switchable normalization. Since Spade
preserves some unwanted noise, we hope switchable nor-
malization’s inclusion of channel wise norm, batchnorm,
and layer norm will result in more realistic photo images.

Also, the interpolation layer in the generator of SPADE
further compresses the segmentation map data into a very
small tensors relative to the segmentation map size. We
propose including downsampling layers inspired by [7], we
can preserve more information from the map labels. By re-
placing the upsampling layers in the original SPADE with
unpooling layers, we now have guided upsampling layers.
We hope this new architecture coupled with Spade and with
the addition of switch normalization will increase user pref-
erence for images.

We conduct experiments on the ADE20k which contains
more than 20K scene-centric images annotated with objects
and object parts. The dataset contains an image with a se-
mantic ground truth shown side by side in Figure 1. This
data is used as input to train the GAN and modified SPADE
architecture. The conditional image synthesis in the case
would be given the segmentation map on the right, generate
an image like that of the left. [3]

Figure 1. Training image (left) with semantic ground truth (right)
from ADE20K. Data was taken from MIT CSAIL[4]
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2. Related Work

Deep generative models are used to synthesize photo-
realistic images. Among the most popular deep generative
models are general adversarial networks (GANs) and vari-
ational autoencoders (VAEs). VAEs consist of an encoder-
decoder architecture as described in [9], where the input is
fed through a neural network (called the “encoder”) to en-
code the input, and the encoded input is decoded through
other convolutional layers (the “decoder”), the intent being
to teach the decoder a correct way to generate an output. As
noted in [10], VAEs themselves tend to have trouble pro-
ducing detailed photorealistic images. GANs, on the other
hand, have two neural networks: a “generative” network
and a “discriminative” network, where the generative net-
work learns to create data intending to fool the discrimina-
tive network, which learns to tell the actual input data from
the generated data. In [8], VAEs and GANs are proposed to
work in tandem, by having the GAN descriminator be the
decoder in the VAE.

Conditional image synthesis requires different input.
In SPADE and in this work, we wish to generate images
given a segmentation map. A segmentation map is an im-
age where parts of the image are segmented into differing
labeled categories. For instance, a landscape image’s seg-
mentation map might consist of three colors: one for the
parts of the image with grass, one for mountains, and one
for the sky.

Normalization layers reduce covariate shift in data.
That is, introducing normalization layers help to preserve
the distribution in data during training, thus allowing for
larger learning rates and general easier trainings. There are
three popular types of normalization: instance normaliza-
tion (In), batch normalization (Bn) [5], and layer normal-
ization (Ln) [6].

Switchable normalization (Sn), developed by [2], is a
combination of channel-wise, batch-wise, and layer-wise
normalization (In, Bn, and Ln, respectively). The idea be-
hind Sn is a weighted sum of these three normalizations,
given by the formula:
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Here we have 6 learnable weights wk, w
′
k. Computa-

tionally this is implemented by taking advantage of the fact
that we can calculate the statistics of batch normalization
and layer normalization using instance normalization. This
formulation allows an adaptable protocol for normalization
for many different architectures, and is robust to changes in
minibatch size.

Photorealistic style transfer involves changing the style
of a photo to that of a reference photo. For example, one

could create an image of a snowy Miami street by apply-
ing the style of a snowy landscape with an image of the
Miami street one would want to see with snow. [11] formu-
lates stylization as an image reconstruction problem. The
whitening and coloring transform (WCT) in [11] is a VAE
for general image reconstruction with the architecture in
Figure 2. The idea behind this architecture is to directly

Figure 2. WCT architecture for generating images.

match feature correlations of the style image and the con-
tent image (i.e. the image we would like to stylize). This is
done using the photo and style projections in the middle of
the architecture. It uses the well-known VGG model from
[13] to create a feature map that is then fed through a pre-
trained decoder.

PhotoWCT is an architecture developed by [7] improv-
ing upon this architecture. The idea behind this adjustment
is that maxpool layers remove information from the photo,
and thus detail that reduces the photorealism of the result.
This is illustrated in Figure 3.

Figure 3. PhotoWCT architecture for generating images. Notice
the upsampling layers in WCT are replaced by unpooling layers.
The unpooling layers are used with maxpool masks, recording the
indices of the maximum value in the maxpool region. [7]

Spatially adaptive normalization, introduced by [1],
is a state-of-the-art architecture for semantic segmentation
GANs. One of the difficulties of semantic image synthesis,
noted in [1], is the loss of detail in the semantic layout of
the input. This is due to normalization in the network; if
an input is given a uniform segmentation map, instance nor-
malization makes all post-normalized pixels identical due
to the averaging through a uniform set. If the input were a
uniform segmentation map with one label, or equal amounts
of other labels, the normalization removes any distinction.
Thus, the idea of spatially-adaptive normalization is to re-



update the model with the input. This is done with the ar-
chitecture illustrated in Figure 4, henceforth referred to as
the SPADE layer. This SPADE layer is implemented in a

Figure 4. How the SPADE architecture “reminds” the normaliza-
tion layer of semantic information.

”ResBik” layer consisting of SPADE, ReLU, a 3×3 convo-
lution, SPADE, ReLU, and another 3× 3 convolution. The
architecture of the entire model is that of a generator with
alternating ResBik layers and upsampling layers.

3. Methods
3.1. Implementing switchable normalization

We seek to make improvements to semantic image
synthesis by first using learnable normalization via [2]’s
switchable normalization program. By applying spatially-
adaptive normalization as developed by [1] to this nor-
malization layer we hope to optimize normalization in our
model with minimal loss of semantic information. In our
implementation, we ignored the sum over batch normaliza-
tion. The Sn formulation allows for an adaptable normaliza-
tion protocol for many different architectures, and is robust
to changes in minibatch size. Indeed, the results in [2] show
promising results when applied to instance segmentation in
COCO, a segmentation dataset very similar to our ADE20K
dataset, and ADE20K itself. It is this reason, coupled with
the relative ease of implementation, that we selected adding
Sn to SPADE as one of our attempts at improvement.

Our approach to optimize this SPADE model was to re-
place the instance of batch normalization in SPADE with
Sn, as illustrated in Figure 5.

The idea behind implementing Sn in the first place was
due to observing some of the ADE20K images. For exam-

Figure 5. SPADE structure with learnable normalization.

ple, some landscape images contained very rough-looking
rocks with smooth sky. Learnable normalization could re-
move unwanted semantic information that is steadfastly
preserved by SPADE. Thus, learnable normalization was
predicted to be a safer way to preserve photorealism. Af-
ter preliminary testing for two epochs, we found that Sn
produced smoother texture in regions with smooth ground
truths, seeming to validate our initial predictions. After test-
ing, we found that this implementation of switchable nor-
malization generated noticeably better results than the base-
line (more on this in the results section). Thus, we decided
to keep this implementation with our further changes to this
model.

3.2. Novel SPADE generator

In light of [7] and [8], we seek to apply spatially adap-
tive normalization (with our switchable normalization) to
a VAE-GAN architecture inspired by PhotoWCT. In short,
we introduce a VAE architecture based on VGG networks
from [13] with photorealistic feature preservation in mind
from [7]. In the original SPADE architecture, the genera-
tor started with a heavily downsampled segmentation map
input. The generator architecture of SPADE is shown in
Figure 6.

Through interpolation we lose potentially valuable infor-
mation, as the compressed input tensor is relatively small.
Thus, we seek to preserve more information by downsam-
pling layers. The architecture of the downsampling layers is



Figure 6. SPADE generator architecture

the same as that of [11], with a maxpool mask for later un-
pooling layers, as [11] reports success using this encoding
network. By downsampling this way, and thus creating a
VAE-GAN in the process, we have learnable ways to com-
press segmentation maps, a more computationally heavy
but more intelligent way to downsample our map. In the
original SPADE generator, resolution is increased by up-
sampling layers. However, resolution can also be increased
by unpooling layers. We hypothesize that this architecture
could be improved by increasing resolution in this way; un-
pooling layers are guided by information from the down-
sampling layers in our encoder. We hypothesize thus that, in
addition to recovering information lost from maxpool layers
in our encoder, the upsampling layers in our architecture are
relatively blind methods of increasing resolution. The gen-
erator architecture we implemented to experiment with this
idea is seen in Figure 7.

Figure 7. Generator with VAE inspired by [7] used with spatially
adaptive normalization.

As one can see in Figure 7, we have replaced the plain
upsampling layers in the original SPADE architecture with
the unpooling layers, with the maxpool mask information
given by our added downsampling layers. By creating
learnable downsampling layers, we have implemented a

VAE-GAN. Because this maxpool-unpooling relationship is
reported by [7] better encode and decode photorealistic in-
formation, we hope this is a better generator, as more in-
formation about the segmentation map is included. One
notices our architecture keeps the final upsampling layer,
leading into the same final SPADE Resnet block (SPADE
ResBlks), the same ReLU nonlinearity, and convolutional
network. The tanh function is applied in our architecture
as well. We included this last upsampling layer because, as
noted in [1], cutting down on downsampling layers makes
the original SPADE model less bulky. As such, we did not
want to create a fully symmetric VAE as in [11] or [7], as
training time is palpably slow for GANs with these datasets.
We decided on allowing one original upsampling layer to
remain, and observed that the training did not slow down
noticeably with this implementation. It is for this reason
that not every upsampling layer was removed from the orig-
inal SPADE architecture. Another difference between our
architecture and [7]’s architecture is the lack of pure convo-
lutional layers after each corresponding unpool layer. This
is because we felt the convolutions in each SPADE ResBlk
layer following our unpooling layers would be able to ac-
complish anything the pure convolutions in Figure ?? might
contribute to information flow.

Figure 8. SPADE ResBlk architecture. We use the convolutions in
this architecture as the plain convolutions in Figure 3.

The architecture above is the layer denoted by the white
rectangles in Figure 6 and in Figure 7.

The above structure as the SPADE descriminator as the
decoder for our VAE is inspired by the reports by [11] and
[7] of its success. The base VAE structure is designed for
style transfer: given an input content image IC and style im-
age IS , the encoder architecture extracts each image’s VGG
features as in the encoder in [13], resulting in outputs ε(IC)
and ε(IS). It then trains the symmetric decoder, then per-
forms whitening and color feature transforms designed to



make the resulting output WCT (IC) satisfy the equation

WCT (IC)(WCT (IC))
T = ε(IS)(ε(IS))

T (2)

Then the feature map WCT (IC) is fed into the decoder to
obtain the stylized image.

The architecture of WCT was designed for artistic styl-
ization. As expected, one runs into problems when styliz-
ing a photo with the intent on creating a photorealistic out-
put. The culprit, found by [7], is the removal of detailed
information by the maxpool layers. This novel architecture
illustrated in 3 reports promising results in creating photo-
realistic images. It is in this light that we created our novel
generator architecture with the focus on features of the in-
put, inspired by feature preserving VGG-based VAE archi-
tecture.

4. Data
We have trained and tested our models using the

ADE20K dataset. ADE20K is a very popular dataset
for training generative models for semantic segmentation.
While there are other popular datasets with photos and se-
mantic segmentation map ground truths, most notably the
COCO dataset, ADE20K was most readily available from
[4]. Upon seeing example images and semantic segmen-
tation ground truths from both COCO and ADE20K, the
difference between the two was deemed negligible. The
ADE20K dataset contains 20210 training images along with
2000 validation images. For each image there is: an RGB
image file, an object segmentation mask containing object
class segmentation masks with the first two channels corre-
sponding to object class masks, and the third corresponding
to instance class masks, a parts segmentation mask, where
the segmentation masks correspond to parts of the objects,
and a .txt file providing a description of the image. There
are 150 semantic classes in the ADE20K dataset. The res-
olution of each image is 1024 × 1024. See Figure 1 for an
explicit example.

ADE20K is standard amongst image segmentation and
contains ”challenging scenes.” [1] For this reason, and
the fact that it is widely used in many papers on se-
mantic segmentation, we chose not to do any data pre-
processing. While data pre-processing would have induced
much shorter training times, we are aiming at preserving
photorealistic features through our experimental architec-
ture, and preprocessing this data would have made the re-
sults of our experiment less clear, as this would have re-
moved photorealistic details we would otherwise have liked
to have tested our architecture on.

In describing the dataset, a picture is truly worth a thou-
sand words, and millions of parameters. In viewing Figure
1, one sees a validation photo on the left with its semantic
ground truth on the right. The semantic ground truth’s dif-
ferent colors are labeled as one of the 150 semantic classes

specified in ADE20K. Given a semantic layout like the se-
mantic ground truth, SPADE, along with architectures like
it, can create a photorealistic image derived from the train-
ing data.

We trained and tested our models on the unprocessed
1024 × 1024 resolution images, with a batch size of 16 for
20 epochs in our baseline and experiments, with 20000 iter-
ations per epoch.

5. Results & Discussion
First we trained the SPADE model as given in [1] and

ran a validation as a baseline. Training was with a batch
size of 16 on 4 Nvidia Tesla P100 gpus. This was the max-
imal amount of gpus we would obtain from gcloud, and 16
was the maximal batch size we could use on our 4 gpus. We
trained for 20 epochs with 20000 iterations per epoch. This
is much lower than SPADE’s 50 epoch training reported,
due to constraints on time and money, and the large size of
the dataset. All other parameters were set as default accord-
ing to SPADE’s documentation. This is because we wanted
to create the optimal training model, and assumed that the
authors of [1] had done ample hyperparameter tuning. For
this reason, and in the interest of keeping our controls held
constant, we did not modify any of the hyperparameters in
the given SPADE. Then we trained our switchnorm imple-
mentation and ran the same validation, following with our
novel generator. Here in Figure 9 we have resulting im-
ages generated by the baseline and our experiment. The first
column represents a sampling of the validation photograph
ground truths. The second column represents the validation
from the baseline. The third represents the validation from
our switchnorm implementation, and the fourth is from our
novel architecture.

As one can see in Figure 9, after a relatively small num-
ber of training epochs, our switchnorm experiment gives
more diverse and in most cases more realistic photorealis-
tic details. This is notably not the case for all images. In
a minority of validation images, we have bright, discolored
“spotting” reported by [1] when testing the more common
pix2pix architecture in [12]. In general this can qualitatively
be described by increased diversity in features. For exam-
ple, in the top row landscape image we used as an example
validation image, there is more grass on the ground in our
implementation than in the baseline. However, the “spotti-
ness” is a downside of such feature diversity. This is likely
because of the nonzero effect the instance norm and layer
norm have on the model, compared to the baseline’s simple
batch norm. We conclude that a learnable, nonzero amount
of batch normalization, layer normalization, and instance
normalization provide a riskier but more vivid image. In
the future a hard-coding of batchnorm would be desirable,
as the bright spots would likely be normalized out by the
more realistic pixels in the rest of the batch.



Figure 9. Validation images. The left column has the validation
images ground truth photograph. The second column has the im-
ages generated our baseline

We trained our novel SPADE generator architecture us-
ing the same parameters stated above. Here in Figure we
have resulting images generated by the baseline and our ex-
periment. The first column represents a sampling of the
validation images. The second represents the validation
from the baseline. The third represents the validation from
our implementation. As one can see in Figure 9, after
a relatively small number of training epochs, our exper-
iment gives significantly more detail than the baseline or
the switchnorm. However, there are the same problems run
into by switchnorm, namely the bright and discolored spots.
These are features in themselves, and thus are preserved by
our novel architecture. This leads us to the conclusion that
our implementation of switchnorm, or lack of a stronger
batchnorm, is the cause for occasionally chaotic image syn-
thesis. That is, the model is too feature-focused to do away
with any outliers caused by lack of segmentation knowledge
provided by the SPADE architecture. In our planning of the
model, this did come up as a potential hazard, but it was de-
cided that the SPADE ResBlk layers would contribute in an
interesting way to counteract this. After looking though dif-
ferent environments, we can qualitatively conclude that our
novel architecture outperforms the other two on landscapes,
but is less realistic with interiors and faces. This may be be-

Figure 10. Images generated by SPADE just with switchnorm are
on the column on the left. Images generated by our novel archi-
tecture with switchnorm on the right column.

cause the amount of large collections of features in the latter
environments confused the hyper feature-focused generator
architecture, causing confusion of the GAN.

We recorded the losses from the baseline and two ex-
periments at various iterations in Figure 12. These are
the losses for the discriminator in detecting fake images
(D fake), the loss for the discriminator in detecting real im-
ages (D real), the loss for the GAN (GAN), and GAN fea-
tures (GAN feat). Through each training model, we see the
discriminator over time gets better at recognizing fake im-
ages and worse at recognizing real images. The generator
continues to produce varied images to trick the generator.
With our limited run of 20 epochs, all models roughly con-
verged to a loss of .8 for the generator and discriminator.

6. Conclusions

Using spatially adaptive normalization to preserve se-
mantic information in GANs is a promising technique for
semantic image synthesis. By applying switchable normal-
ization, we found that switchable normalization increases
diversity in features, often leading to a more photorealistic
image, but still occasionally leading to anomalies. We con-
clude that layer normalization and instance normalization



Figure 11. Losses for our baseline and experiments as recorded by
SPADE. The first column is our baseline. The second columns is
our switchnorm with original SPADE architecture. Graphed using
Tensorboard

contribute nontrivially to variance of generated features.
We also applied SPADE to our novel VAE-GAN archi-

tecture: the VAE being a VGG modified with an eye to pho-
torealistic style transforms, we found that details were bet-
ter generated than either the baseline or switchnorm. This
is as we predicted; the feature-focused photo stylization
centered VGG VAE-GAN was indeed feature focues. The
smoothness of simple switchnorm becomes more obvious
in comparison to our new architecture. This leaves the ex-
perimentation to whether switchnorm is actually optimal or
not.

7. Future Work
In the future, we would first and foremost want to train

our models using the full 50 epochs as per the documenta-
tion in [1], as we would like to see the completed model,
and then most likely the photorealistic images seen in [1].
We would also like to hard-code a batch normalization layer
into our switchnorm implementation layer, as normalizing
over the batch of data would likely reduce the brightness or
glaring colors of the spots discussed in the previous section.
We would also like to experiment with different amounts

Figure 12. Losses for our novel architecture with switchnorm.
Graphed using Tensorboard

of unpooling levels in our decoder, and see how this corre-
sponds to photo detail being generated. Finally, we would
like to run this novel architecture without switchnorm and
see if the occasional chaotic image still occurs.
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